cannam@127
|
1 /*
|
cannam@127
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
4 *
|
cannam@127
|
5 * 128-bit AVX support by Erik Lindahl, 2015.
|
cannam@127
|
6 * Erik Lindahl hereby places his modifications in the public domain.
|
cannam@127
|
7 *
|
cannam@127
|
8 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
9 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
10 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
11 * (at your option) any later version.
|
cannam@127
|
12 *
|
cannam@127
|
13 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
16 * GNU General Public License for more details.
|
cannam@127
|
17 *
|
cannam@127
|
18 * You should have received a copy of the GNU General Public License
|
cannam@127
|
19 * along with this program; if not, write to the Free Software
|
cannam@127
|
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
21 *
|
cannam@127
|
22 */
|
cannam@127
|
23
|
cannam@127
|
24 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
|
cannam@127
|
25 #error "AVX only works in single or double precision"
|
cannam@127
|
26 #endif
|
cannam@127
|
27
|
cannam@127
|
28 #ifdef FFTW_SINGLE
|
cannam@127
|
29 # define DS(d,s) s /* single-precision option */
|
cannam@127
|
30 # define SUFF(name) name ## s
|
cannam@127
|
31 #else
|
cannam@127
|
32 # define DS(d,s) d /* double-precision option */
|
cannam@127
|
33 # define SUFF(name) name ## d
|
cannam@127
|
34 #endif
|
cannam@127
|
35
|
cannam@127
|
36 #define SIMD_SUFFIX _avx_128_fma /* for renaming */
|
cannam@127
|
37 #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */
|
cannam@127
|
38 #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
|
cannam@127
|
39 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
|
cannam@127
|
40
|
cannam@127
|
41 #ifdef _MSC_VER
|
cannam@127
|
42 #ifndef inline
|
cannam@127
|
43 #define inline __inline
|
cannam@127
|
44 #endif
|
cannam@127
|
45 #endif
|
cannam@127
|
46
|
cannam@127
|
47 #include <immintrin.h>
|
cannam@127
|
48 #ifdef _MSC_VER
|
cannam@127
|
49 # include <intrin.h>
|
cannam@127
|
50 #elif defined (__GNUC__)
|
cannam@127
|
51 # include <x86intrin.h>
|
cannam@127
|
52 #endif
|
cannam@127
|
53
|
cannam@127
|
54 #if !(defined(__AVX__) && defined(__FMA4__)) /* sanity check */
|
cannam@127
|
55 #error "compiling simd-avx-128-fma.h without -mavx or -mfma4"
|
cannam@127
|
56 #endif
|
cannam@127
|
57
|
cannam@127
|
58 typedef DS(__m128d,__m128) V;
|
cannam@127
|
59 #define VADD SUFF(_mm_add_p)
|
cannam@127
|
60 #define VSUB SUFF(_mm_sub_p)
|
cannam@127
|
61 #define VMUL SUFF(_mm_mul_p)
|
cannam@127
|
62 #define VXOR SUFF(_mm_xor_p)
|
cannam@127
|
63 #define SHUF SUFF(_mm_shuffle_p)
|
cannam@127
|
64 #define VPERM1 SUFF(_mm_permute_p)
|
cannam@127
|
65 #define UNPCKL SUFF(_mm_unpacklo_p)
|
cannam@127
|
66 #define UNPCKH SUFF(_mm_unpackhi_p)
|
cannam@127
|
67
|
cannam@127
|
68 #define SHUFVALS(fp0,fp1,fp2,fp3) \
|
cannam@127
|
69 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
|
cannam@127
|
70
|
cannam@127
|
71 #define VDUPL(x) DS(_mm_permute_pd(x,0), _mm_moveldup_ps(x))
|
cannam@127
|
72 #define VDUPH(x) DS(_mm_permute_pd(x,3), _mm_movehdup_ps(x))
|
cannam@127
|
73 #define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
|
cannam@127
|
74 #define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
|
cannam@127
|
75 #define STOREH(a, v) DS(_mm_storeh_pd(a, v), _mm_storeh_pi((__m64 *)(a), v))
|
cannam@127
|
76 #define STOREL(a, v) DS(_mm_storel_pd(a, v), _mm_storel_pi((__m64 *)(a), v))
|
cannam@127
|
77
|
cannam@127
|
78 #define VLIT(x0, x1) DS(_mm_set_pd(x0, x1), _mm_set_ps(x0, x1, x0, x1))
|
cannam@127
|
79 #define DVK(var, val) V var = VLIT(val, val)
|
cannam@127
|
80 #define LDK(x) x
|
cannam@127
|
81
|
cannam@127
|
82 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
|
cannam@127
|
83 {
|
cannam@127
|
84 (void)aligned_like; /* UNUSED */
|
cannam@127
|
85 (void)ivs; /* UNUSED */
|
cannam@127
|
86 return *(const V *)x;
|
cannam@127
|
87 }
|
cannam@127
|
88
|
cannam@127
|
89 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
|
cannam@127
|
90 {
|
cannam@127
|
91 (void)aligned_like; /* UNUSED */
|
cannam@127
|
92 (void)ovs; /* UNUSED */
|
cannam@127
|
93 *(V *)x = v;
|
cannam@127
|
94 }
|
cannam@127
|
95
|
cannam@127
|
96 #ifdef FFTW_SINGLE
|
cannam@127
|
97
|
cannam@127
|
98 static inline V LD(const R *x, INT ivs, const R *aligned_like)
|
cannam@127
|
99 {
|
cannam@127
|
100 V var;
|
cannam@127
|
101 #if defined(__ICC) || (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ > 8)
|
cannam@127
|
102 var = LOADL(x, SUFF(_mm_undefined_p)());
|
cannam@127
|
103 var = LOADH(x + ivs, var);
|
cannam@127
|
104 #else
|
cannam@127
|
105 var = LOADL(x, var);
|
cannam@127
|
106 var = LOADH(x + ivs, var);
|
cannam@127
|
107 #endif
|
cannam@127
|
108 return var;
|
cannam@127
|
109 }
|
cannam@127
|
110
|
cannam@127
|
111 # ifdef _MSC_VER
|
cannam@127
|
112 # pragma warning(default : 4700)
|
cannam@127
|
113 # pragma runtime_checks("u", restore)
|
cannam@127
|
114 # endif
|
cannam@127
|
115
|
cannam@127
|
116 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
|
cannam@127
|
117 {
|
cannam@127
|
118 (void)aligned_like; /* UNUSED */
|
cannam@127
|
119 /* WARNING: the extra_iter hack depends upon STOREL occurring
|
cannam@127
|
120 after STOREH */
|
cannam@127
|
121 STOREH(x + ovs, v);
|
cannam@127
|
122 STOREL(x, v);
|
cannam@127
|
123 }
|
cannam@127
|
124
|
cannam@127
|
125 #else /* ! FFTW_SINGLE */
|
cannam@127
|
126 # define LD LDA
|
cannam@127
|
127 # define ST STA
|
cannam@127
|
128 #endif
|
cannam@127
|
129
|
cannam@127
|
130 #define STM2 DS(STA,ST)
|
cannam@127
|
131 #define STN2(x, v0, v1, ovs) /* nop */
|
cannam@127
|
132
|
cannam@127
|
133 #ifdef FFTW_SINGLE
|
cannam@127
|
134 # define STM4(x, v, ovs, aligned_like) /* no-op */
|
cannam@127
|
135 /* STN4 is a macro, not a function, thanks to Visual C++ developers
|
cannam@127
|
136 deciding "it would be infrequent that people would want to pass more
|
cannam@127
|
137 than 3 [__m128 parameters] by value." 3 parameters ought to be enough
|
cannam@127
|
138 for anybody. */
|
cannam@127
|
139 # define STN4(x, v0, v1, v2, v3, ovs) \
|
cannam@127
|
140 { \
|
cannam@127
|
141 V xxx0, xxx1, xxx2, xxx3; \
|
cannam@127
|
142 xxx0 = UNPCKL(v0, v2); \
|
cannam@127
|
143 xxx1 = UNPCKH(v0, v2); \
|
cannam@127
|
144 xxx2 = UNPCKL(v1, v3); \
|
cannam@127
|
145 xxx3 = UNPCKH(v1, v3); \
|
cannam@127
|
146 STA(x, UNPCKL(xxx0, xxx2), 0, 0); \
|
cannam@127
|
147 STA(x + ovs, UNPCKH(xxx0, xxx2), 0, 0); \
|
cannam@127
|
148 STA(x + 2 * ovs, UNPCKL(xxx1, xxx3), 0, 0); \
|
cannam@127
|
149 STA(x + 3 * ovs, UNPCKH(xxx1, xxx3), 0, 0); \
|
cannam@127
|
150 }
|
cannam@127
|
151 #else /* !FFTW_SINGLE */
|
cannam@127
|
152 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
|
cannam@127
|
153 {
|
cannam@127
|
154 (void)aligned_like; /* UNUSED */
|
cannam@127
|
155 STOREL(x, v);
|
cannam@127
|
156 STOREH(x + ovs, v);
|
cannam@127
|
157 }
|
cannam@127
|
158 # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
|
cannam@127
|
159 #endif
|
cannam@127
|
160
|
cannam@127
|
161 static inline V FLIP_RI(V x)
|
cannam@127
|
162 {
|
cannam@127
|
163 return VPERM1(x, DS(1, SHUFVALS(1, 0, 3, 2)));
|
cannam@127
|
164 }
|
cannam@127
|
165
|
cannam@127
|
166
|
cannam@127
|
167 static inline V VCONJ(V x)
|
cannam@127
|
168 {
|
cannam@127
|
169 V pmpm = VLIT(-0.0, 0.0);
|
cannam@127
|
170 return VXOR(pmpm, x);
|
cannam@127
|
171 }
|
cannam@127
|
172
|
cannam@127
|
173 static inline V VBYI(V x)
|
cannam@127
|
174 {
|
cannam@127
|
175 x = VCONJ(x);
|
cannam@127
|
176 x = FLIP_RI(x);
|
cannam@127
|
177 return x;
|
cannam@127
|
178 }
|
cannam@127
|
179
|
cannam@127
|
180 /* FMA support */
|
cannam@127
|
181 #define VFMA(a, b, c) SUFF(_mm_macc_p)(a,b,c)
|
cannam@127
|
182 #define VFNMS(a, b, c) SUFF(_mm_nmacc_p)(a,b,c)
|
cannam@127
|
183 #define VFMS(a, b, c) SUFF(_mm_msub_p)(a,b,c)
|
cannam@127
|
184 #define VFMAI(b, c) SUFF(_mm_addsub_p)(c,FLIP_RI(b))
|
cannam@127
|
185 #define VFNMSI(b, c) VSUB(c, VBYI(b))
|
cannam@127
|
186 #define VFMACONJ(b,c) VADD(VCONJ(b),c)
|
cannam@127
|
187 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
|
cannam@127
|
188 #define VFNMSCONJ(b,c) SUFF(_mm_addsub_p)(c,b)
|
cannam@127
|
189
|
cannam@127
|
190 static inline V VZMUL(V tx, V sr)
|
cannam@127
|
191 {
|
cannam@127
|
192 V tr = VDUPL(tx);
|
cannam@127
|
193 V ti = VDUPH(tx);
|
cannam@127
|
194 tr = VMUL(tr, sr);
|
cannam@127
|
195 ti = VMUL(ti, FLIP_RI(sr));
|
cannam@127
|
196 return SUFF(_mm_addsub_p)(tr,ti);
|
cannam@127
|
197 }
|
cannam@127
|
198
|
cannam@127
|
199 static inline V VZMULJ(V tx, V sr)
|
cannam@127
|
200 {
|
cannam@127
|
201 V tr = VDUPL(tx);
|
cannam@127
|
202 V ti = VDUPH(tx);
|
cannam@127
|
203 tr = VMUL(tr, sr);
|
cannam@127
|
204 sr = VBYI(sr);
|
cannam@127
|
205 return VFNMS(ti, sr, tr);
|
cannam@127
|
206 }
|
cannam@127
|
207
|
cannam@127
|
208 static inline V VZMULI(V tx, V sr)
|
cannam@127
|
209 {
|
cannam@127
|
210 V tr = VDUPL(tx);
|
cannam@127
|
211 V ti = VDUPH(tx);
|
cannam@127
|
212 ti = VMUL(ti, sr);
|
cannam@127
|
213 sr = VBYI(sr);
|
cannam@127
|
214 return VFMS(tr, sr, ti);
|
cannam@127
|
215 }
|
cannam@127
|
216
|
cannam@127
|
217 static inline V VZMULIJ(V tx, V sr)
|
cannam@127
|
218 {
|
cannam@127
|
219 V tr = VDUPL(tx);
|
cannam@127
|
220 V ti = VDUPH(tx);
|
cannam@127
|
221 ti = VMUL(ti, sr);
|
cannam@127
|
222 tr = VMUL(tr, FLIP_RI(sr));
|
cannam@127
|
223 return SUFF(_mm_addsub_p)(ti,tr);
|
cannam@127
|
224 }
|
cannam@127
|
225
|
cannam@127
|
226 /* twiddle storage #1: compact, slower */
|
cannam@127
|
227 #ifdef FFTW_SINGLE
|
cannam@127
|
228 # define VTW1(v,x) \
|
cannam@127
|
229 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
|
cannam@127
|
230 static inline V BYTW1(const R *t, V sr)
|
cannam@127
|
231 {
|
cannam@127
|
232 const V *twp = (const V *)t;
|
cannam@127
|
233 V tx = twp[0];
|
cannam@127
|
234 V tr = UNPCKL(tx, tx);
|
cannam@127
|
235 V ti = UNPCKH(tx, tx);
|
cannam@127
|
236 tr = VMUL(tr, sr);
|
cannam@127
|
237 ti = VMUL(ti, FLIP_RI(sr));
|
cannam@127
|
238 return SUFF(_mm_addsub_p)(tr,ti);
|
cannam@127
|
239 }
|
cannam@127
|
240 static inline V BYTWJ1(const R *t, V sr)
|
cannam@127
|
241 {
|
cannam@127
|
242 const V *twp = (const V *)t;
|
cannam@127
|
243 V tx = twp[0];
|
cannam@127
|
244 V tr = UNPCKL(tx, tx);
|
cannam@127
|
245 V ti = UNPCKH(tx, tx);
|
cannam@127
|
246 tr = VMUL(tr, sr);
|
cannam@127
|
247 sr = VBYI(sr);
|
cannam@127
|
248 return VFNMS(ti, sr, tr);
|
cannam@127
|
249 }
|
cannam@127
|
250 #else /* !FFTW_SINGLE */
|
cannam@127
|
251 # define VTW1(v,x) {TW_CEXP, v, x}
|
cannam@127
|
252 static inline V BYTW1(const R *t, V sr)
|
cannam@127
|
253 {
|
cannam@127
|
254 V tx = LD(t, 1, t);
|
cannam@127
|
255 return VZMUL(tx, sr);
|
cannam@127
|
256 }
|
cannam@127
|
257 static inline V BYTWJ1(const R *t, V sr)
|
cannam@127
|
258 {
|
cannam@127
|
259 V tx = LD(t, 1, t);
|
cannam@127
|
260 return VZMULJ(tx, sr);
|
cannam@127
|
261 }
|
cannam@127
|
262 #endif
|
cannam@127
|
263 #define TWVL1 (VL)
|
cannam@127
|
264
|
cannam@127
|
265 /* twiddle storage #2: twice the space, faster (when in cache) */
|
cannam@127
|
266 #ifdef FFTW_SINGLE
|
cannam@127
|
267 # define VTW2(v,x) \
|
cannam@127
|
268 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
|
cannam@127
|
269 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
|
cannam@127
|
270 #else /* !FFTW_SINGLE */
|
cannam@127
|
271 # define VTW2(v,x) \
|
cannam@127
|
272 {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
|
cannam@127
|
273 #endif
|
cannam@127
|
274 #define TWVL2 (2 * VL)
|
cannam@127
|
275 static inline V BYTW2(const R *t, V sr)
|
cannam@127
|
276 {
|
cannam@127
|
277 const V *twp = (const V *)t;
|
cannam@127
|
278 V si = FLIP_RI(sr);
|
cannam@127
|
279 V tr = twp[0], ti = twp[1];
|
cannam@127
|
280 return VFMA(tr, sr, VMUL(ti, si));
|
cannam@127
|
281 }
|
cannam@127
|
282 static inline V BYTWJ2(const R *t, V sr)
|
cannam@127
|
283 {
|
cannam@127
|
284 const V *twp = (const V *)t;
|
cannam@127
|
285 V si = FLIP_RI(sr);
|
cannam@127
|
286 V tr = twp[0], ti = twp[1];
|
cannam@127
|
287 return VFNMS(ti, si, VMUL(tr, sr));
|
cannam@127
|
288 }
|
cannam@127
|
289
|
cannam@127
|
290 /* twiddle storage #3 */
|
cannam@127
|
291 #ifdef FFTW_SINGLE
|
cannam@127
|
292 # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
|
cannam@127
|
293 # define TWVL3 (VL)
|
cannam@127
|
294 #else
|
cannam@127
|
295 # define VTW3(v,x) VTW1(v,x)
|
cannam@127
|
296 # define TWVL3 TWVL1
|
cannam@127
|
297 #endif
|
cannam@127
|
298
|
cannam@127
|
299 /* twiddle storage for split arrays */
|
cannam@127
|
300 #ifdef FFTW_SINGLE
|
cannam@127
|
301 # define VTWS(v,x) \
|
cannam@127
|
302 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
|
cannam@127
|
303 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
|
cannam@127
|
304 #else
|
cannam@127
|
305 # define VTWS(v,x) \
|
cannam@127
|
306 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
|
cannam@127
|
307 #endif
|
cannam@127
|
308 #define TWVLS (2 * VL)
|
cannam@127
|
309
|
cannam@127
|
310 #define VLEAVE() /* nothing */
|
cannam@127
|
311
|
cannam@127
|
312 #include "simd-common.h"
|