annotate src/fftw-3.3.5/reodft/reodft11e-r2hc-odd.c @ 148:b4bfdf10c4b3

Update Win64 capnp builds to v0.6
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 22 May 2017 18:56:49 +0100
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21
cannam@127 22 /* Do an R{E,O}DFT11 problem via an R2HC problem of the same *odd* size,
cannam@127 23 with some permutations and post-processing, as described in:
cannam@127 24
cannam@127 25 S. C. Chan and K. L. Ho, "Fast algorithms for computing the
cannam@127 26 discrete cosine transform," IEEE Trans. Circuits Systems II:
cannam@127 27 Analog & Digital Sig. Proc. 39 (3), 185--190 (1992).
cannam@127 28
cannam@127 29 (For even sizes, see reodft11e-radix2.c.)
cannam@127 30
cannam@127 31 This algorithm is related to the 8 x n prime-factor-algorithm (PFA)
cannam@127 32 decomposition of the size 8n "logical" DFT corresponding to the
cannam@127 33 R{EO}DFT11.
cannam@127 34
cannam@127 35 Aside from very confusing notation (several symbols are redefined
cannam@127 36 from one line to the next), be aware that this paper has some
cannam@127 37 errors. In particular, the signs are wrong in Eqs. (34-35). Also,
cannam@127 38 Eqs. (36-37) should be simply C(k) = C(2k + 1 mod N), and similarly
cannam@127 39 for S (or, equivalently, the second cases should have 2*N - 2*k - 1
cannam@127 40 instead of N - k - 1). Note also that in their definition of the
cannam@127 41 DFT, similarly to FFTW's, the exponent's sign is -1, but they
cannam@127 42 forgot to correspondingly multiply S (the sine terms) by -1.
cannam@127 43 */
cannam@127 44
cannam@127 45 #include "reodft.h"
cannam@127 46
cannam@127 47 typedef struct {
cannam@127 48 solver super;
cannam@127 49 } S;
cannam@127 50
cannam@127 51 typedef struct {
cannam@127 52 plan_rdft super;
cannam@127 53 plan *cld;
cannam@127 54 INT is, os;
cannam@127 55 INT n;
cannam@127 56 INT vl;
cannam@127 57 INT ivs, ovs;
cannam@127 58 rdft_kind kind;
cannam@127 59 } P;
cannam@127 60
cannam@127 61 static DK(SQRT2, +1.4142135623730950488016887242096980785696718753769);
cannam@127 62
cannam@127 63 #define SGN_SET(x, i) ((i) % 2 ? -(x) : (x))
cannam@127 64
cannam@127 65 static void apply_re11(const plan *ego_, R *I, R *O)
cannam@127 66 {
cannam@127 67 const P *ego = (const P *) ego_;
cannam@127 68 INT is = ego->is, os = ego->os;
cannam@127 69 INT i, n = ego->n, n2 = n/2;
cannam@127 70 INT iv, vl = ego->vl;
cannam@127 71 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@127 72 R *buf;
cannam@127 73
cannam@127 74 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@127 75
cannam@127 76 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@127 77 {
cannam@127 78 INT m;
cannam@127 79 for (i = 0, m = n2; m < n; ++i, m += 4)
cannam@127 80 buf[i] = I[is * m];
cannam@127 81 for (; m < 2 * n; ++i, m += 4)
cannam@127 82 buf[i] = -I[is * (2*n - m - 1)];
cannam@127 83 for (; m < 3 * n; ++i, m += 4)
cannam@127 84 buf[i] = -I[is * (m - 2*n)];
cannam@127 85 for (; m < 4 * n; ++i, m += 4)
cannam@127 86 buf[i] = I[is * (4*n - m - 1)];
cannam@127 87 m -= 4 * n;
cannam@127 88 for (; i < n; ++i, m += 4)
cannam@127 89 buf[i] = I[is * m];
cannam@127 90 }
cannam@127 91
cannam@127 92 { /* child plan: R2HC of size n */
cannam@127 93 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@127 94 cld->apply((plan *) cld, buf, buf);
cannam@127 95 }
cannam@127 96
cannam@127 97 /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */
cannam@127 98 for (i = 0; i + i + 1 < n2; ++i) {
cannam@127 99 INT k = i + i + 1;
cannam@127 100 E c1, s1;
cannam@127 101 E c2, s2;
cannam@127 102 c1 = buf[k];
cannam@127 103 c2 = buf[k + 1];
cannam@127 104 s2 = buf[n - (k + 1)];
cannam@127 105 s1 = buf[n - k];
cannam@127 106
cannam@127 107 O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2) +
cannam@127 108 SGN_SET(s1, i/2));
cannam@127 109 O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2) -
cannam@127 110 SGN_SET(s1, (n-(i+1))/2));
cannam@127 111
cannam@127 112 O[os * (n2 - (i+1))] = SQRT2 * (SGN_SET(c2, (n2-i)/2) -
cannam@127 113 SGN_SET(s2, (n2-(i+1))/2));
cannam@127 114 O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2) +
cannam@127 115 SGN_SET(s2, (n2+(i+1))/2));
cannam@127 116 }
cannam@127 117 if (i + i + 1 == n2) {
cannam@127 118 E c, s;
cannam@127 119 c = buf[n2];
cannam@127 120 s = buf[n - n2];
cannam@127 121 O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2) +
cannam@127 122 SGN_SET(s, i/2));
cannam@127 123 O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2) +
cannam@127 124 SGN_SET(s, (i+1)/2));
cannam@127 125 }
cannam@127 126 O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2);
cannam@127 127 }
cannam@127 128
cannam@127 129 X(ifree)(buf);
cannam@127 130 }
cannam@127 131
cannam@127 132 /* like for rodft01, rodft11 is obtained from redft11 by
cannam@127 133 reversing the input and flipping the sign of every other output. */
cannam@127 134 static void apply_ro11(const plan *ego_, R *I, R *O)
cannam@127 135 {
cannam@127 136 const P *ego = (const P *) ego_;
cannam@127 137 INT is = ego->is, os = ego->os;
cannam@127 138 INT i, n = ego->n, n2 = n/2;
cannam@127 139 INT iv, vl = ego->vl;
cannam@127 140 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@127 141 R *buf;
cannam@127 142
cannam@127 143 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@127 144
cannam@127 145 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@127 146 {
cannam@127 147 INT m;
cannam@127 148 for (i = 0, m = n2; m < n; ++i, m += 4)
cannam@127 149 buf[i] = I[is * (n - 1 - m)];
cannam@127 150 for (; m < 2 * n; ++i, m += 4)
cannam@127 151 buf[i] = -I[is * (m - n)];
cannam@127 152 for (; m < 3 * n; ++i, m += 4)
cannam@127 153 buf[i] = -I[is * (3*n - 1 - m)];
cannam@127 154 for (; m < 4 * n; ++i, m += 4)
cannam@127 155 buf[i] = I[is * (m - 3*n)];
cannam@127 156 m -= 4 * n;
cannam@127 157 for (; i < n; ++i, m += 4)
cannam@127 158 buf[i] = I[is * (n - 1 - m)];
cannam@127 159 }
cannam@127 160
cannam@127 161 { /* child plan: R2HC of size n */
cannam@127 162 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@127 163 cld->apply((plan *) cld, buf, buf);
cannam@127 164 }
cannam@127 165
cannam@127 166 /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */
cannam@127 167 for (i = 0; i + i + 1 < n2; ++i) {
cannam@127 168 INT k = i + i + 1;
cannam@127 169 INT j;
cannam@127 170 E c1, s1;
cannam@127 171 E c2, s2;
cannam@127 172 c1 = buf[k];
cannam@127 173 c2 = buf[k + 1];
cannam@127 174 s2 = buf[n - (k + 1)];
cannam@127 175 s1 = buf[n - k];
cannam@127 176
cannam@127 177 O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2 + i) +
cannam@127 178 SGN_SET(s1, i/2 + i));
cannam@127 179 O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2 + i) -
cannam@127 180 SGN_SET(s1, (n-(i+1))/2 + i));
cannam@127 181
cannam@127 182 j = n2 - (i+1);
cannam@127 183 O[os * j] = SQRT2 * (SGN_SET(c2, (n2-i)/2 + j) -
cannam@127 184 SGN_SET(s2, (n2-(i+1))/2 + j));
cannam@127 185 O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2 + j) +
cannam@127 186 SGN_SET(s2, (n2+(i+1))/2 + j));
cannam@127 187 }
cannam@127 188 if (i + i + 1 == n2) {
cannam@127 189 E c, s;
cannam@127 190 c = buf[n2];
cannam@127 191 s = buf[n - n2];
cannam@127 192 O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2 + i) +
cannam@127 193 SGN_SET(s, i/2 + i));
cannam@127 194 O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2 + i) +
cannam@127 195 SGN_SET(s, (i+1)/2 + i));
cannam@127 196 }
cannam@127 197 O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2 + n2);
cannam@127 198 }
cannam@127 199
cannam@127 200 X(ifree)(buf);
cannam@127 201 }
cannam@127 202
cannam@127 203 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@127 204 {
cannam@127 205 P *ego = (P *) ego_;
cannam@127 206 X(plan_awake)(ego->cld, wakefulness);
cannam@127 207 }
cannam@127 208
cannam@127 209 static void destroy(plan *ego_)
cannam@127 210 {
cannam@127 211 P *ego = (P *) ego_;
cannam@127 212 X(plan_destroy_internal)(ego->cld);
cannam@127 213 }
cannam@127 214
cannam@127 215 static void print(const plan *ego_, printer *p)
cannam@127 216 {
cannam@127 217 const P *ego = (const P *) ego_;
cannam@127 218 p->print(p, "(%se-r2hc-odd-%D%v%(%p%))",
cannam@127 219 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
cannam@127 220 }
cannam@127 221
cannam@127 222 static int applicable0(const solver *ego_, const problem *p_)
cannam@127 223 {
cannam@127 224 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 225 UNUSED(ego_);
cannam@127 226
cannam@127 227 return (1
cannam@127 228 && p->sz->rnk == 1
cannam@127 229 && p->vecsz->rnk <= 1
cannam@127 230 && p->sz->dims[0].n % 2 == 1
cannam@127 231 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
cannam@127 232 );
cannam@127 233 }
cannam@127 234
cannam@127 235 static int applicable(const solver *ego, const problem *p, const planner *plnr)
cannam@127 236 {
cannam@127 237 return (!NO_SLOWP(plnr) && applicable0(ego, p));
cannam@127 238 }
cannam@127 239
cannam@127 240 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 241 {
cannam@127 242 P *pln;
cannam@127 243 const problem_rdft *p;
cannam@127 244 plan *cld;
cannam@127 245 R *buf;
cannam@127 246 INT n;
cannam@127 247 opcnt ops;
cannam@127 248
cannam@127 249 static const plan_adt padt = {
cannam@127 250 X(rdft_solve), awake, print, destroy
cannam@127 251 };
cannam@127 252
cannam@127 253 if (!applicable(ego_, p_, plnr))
cannam@127 254 return (plan *)0;
cannam@127 255
cannam@127 256 p = (const problem_rdft *) p_;
cannam@127 257
cannam@127 258 n = p->sz->dims[0].n;
cannam@127 259 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@127 260
cannam@127 261 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
cannam@127 262 X(mktensor_0d)(),
cannam@127 263 buf, buf, R2HC));
cannam@127 264 X(ifree)(buf);
cannam@127 265 if (!cld)
cannam@127 266 return (plan *)0;
cannam@127 267
cannam@127 268 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
cannam@127 269 pln->n = n;
cannam@127 270 pln->is = p->sz->dims[0].is;
cannam@127 271 pln->os = p->sz->dims[0].os;
cannam@127 272 pln->cld = cld;
cannam@127 273 pln->kind = p->kind[0];
cannam@127 274
cannam@127 275 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
cannam@127 276
cannam@127 277 X(ops_zero)(&ops);
cannam@127 278 ops.add = n - 1;
cannam@127 279 ops.mul = n;
cannam@127 280 ops.other = 4*n;
cannam@127 281
cannam@127 282 X(ops_zero)(&pln->super.super.ops);
cannam@127 283 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
cannam@127 284 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
cannam@127 285
cannam@127 286 return &(pln->super.super);
cannam@127 287 }
cannam@127 288
cannam@127 289 /* constructor */
cannam@127 290 static solver *mksolver(void)
cannam@127 291 {
cannam@127 292 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@127 293 S *slv = MKSOLVER(S, &sadt);
cannam@127 294 return &(slv->super);
cannam@127 295 }
cannam@127 296
cannam@127 297 void X(reodft11e_r2hc_odd_register)(planner *p)
cannam@127 298 {
cannam@127 299 REGISTER_SOLVER(p, mksolver());
cannam@127 300 }