annotate src/fftw-3.3.5/reodft/redft00e-r2hc-pad.c @ 148:b4bfdf10c4b3

Update Win64 capnp builds to v0.6
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 22 May 2017 18:56:49 +0100
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21
cannam@127 22 /* Do a REDFT00 problem via an R2HC problem, padded symmetrically to
cannam@127 23 twice the size. This is asymptotically a factor of ~2 worse than
cannam@127 24 redft00e-r2hc.c (the algorithm used in e.g. FFTPACK and Numerical
cannam@127 25 Recipes), but we abandoned the latter after we discovered that it
cannam@127 26 has intrinsic accuracy problems. */
cannam@127 27
cannam@127 28 #include "reodft.h"
cannam@127 29
cannam@127 30 typedef struct {
cannam@127 31 solver super;
cannam@127 32 } S;
cannam@127 33
cannam@127 34 typedef struct {
cannam@127 35 plan_rdft super;
cannam@127 36 plan *cld, *cldcpy;
cannam@127 37 INT is;
cannam@127 38 INT n;
cannam@127 39 INT vl;
cannam@127 40 INT ivs, ovs;
cannam@127 41 } P;
cannam@127 42
cannam@127 43 static void apply(const plan *ego_, R *I, R *O)
cannam@127 44 {
cannam@127 45 const P *ego = (const P *) ego_;
cannam@127 46 INT is = ego->is;
cannam@127 47 INT i, n = ego->n;
cannam@127 48 INT iv, vl = ego->vl;
cannam@127 49 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@127 50 R *buf;
cannam@127 51
cannam@127 52 buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS);
cannam@127 53
cannam@127 54 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@127 55 buf[0] = I[0];
cannam@127 56 for (i = 1; i < n; ++i) {
cannam@127 57 R a = I[i * is];
cannam@127 58 buf[i] = a;
cannam@127 59 buf[2*n - i] = a;
cannam@127 60 }
cannam@127 61 buf[i] = I[i * is]; /* i == n, Nyquist */
cannam@127 62
cannam@127 63 /* r2hc transform of size 2*n */
cannam@127 64 {
cannam@127 65 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@127 66 cld->apply((plan *) cld, buf, buf);
cannam@127 67 }
cannam@127 68
cannam@127 69 /* copy n+1 real numbers (real parts of hc array) from buf to O */
cannam@127 70 {
cannam@127 71 plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy;
cannam@127 72 cldcpy->apply((plan *) cldcpy, buf, O);
cannam@127 73 }
cannam@127 74 }
cannam@127 75
cannam@127 76 X(ifree)(buf);
cannam@127 77 }
cannam@127 78
cannam@127 79 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@127 80 {
cannam@127 81 P *ego = (P *) ego_;
cannam@127 82 X(plan_awake)(ego->cld, wakefulness);
cannam@127 83 X(plan_awake)(ego->cldcpy, wakefulness);
cannam@127 84 }
cannam@127 85
cannam@127 86 static void destroy(plan *ego_)
cannam@127 87 {
cannam@127 88 P *ego = (P *) ego_;
cannam@127 89 X(plan_destroy_internal)(ego->cldcpy);
cannam@127 90 X(plan_destroy_internal)(ego->cld);
cannam@127 91 }
cannam@127 92
cannam@127 93 static void print(const plan *ego_, printer *p)
cannam@127 94 {
cannam@127 95 const P *ego = (const P *) ego_;
cannam@127 96 p->print(p, "(redft00e-r2hc-pad-%D%v%(%p%)%(%p%))",
cannam@127 97 ego->n + 1, ego->vl, ego->cld, ego->cldcpy);
cannam@127 98 }
cannam@127 99
cannam@127 100 static int applicable0(const solver *ego_, const problem *p_)
cannam@127 101 {
cannam@127 102 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 103 UNUSED(ego_);
cannam@127 104
cannam@127 105 return (1
cannam@127 106 && p->sz->rnk == 1
cannam@127 107 && p->vecsz->rnk <= 1
cannam@127 108 && p->kind[0] == REDFT00
cannam@127 109 && p->sz->dims[0].n > 1 /* n == 1 is not well-defined */
cannam@127 110 );
cannam@127 111 }
cannam@127 112
cannam@127 113 static int applicable(const solver *ego, const problem *p, const planner *plnr)
cannam@127 114 {
cannam@127 115 return (!NO_SLOWP(plnr) && applicable0(ego, p));
cannam@127 116 }
cannam@127 117
cannam@127 118 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 119 {
cannam@127 120 P *pln;
cannam@127 121 const problem_rdft *p;
cannam@127 122 plan *cld = (plan *) 0, *cldcpy;
cannam@127 123 R *buf = (R *) 0;
cannam@127 124 INT n;
cannam@127 125 INT vl, ivs, ovs;
cannam@127 126 opcnt ops;
cannam@127 127
cannam@127 128 static const plan_adt padt = {
cannam@127 129 X(rdft_solve), awake, print, destroy
cannam@127 130 };
cannam@127 131
cannam@127 132 if (!applicable(ego_, p_, plnr))
cannam@127 133 goto nada;
cannam@127 134
cannam@127 135 p = (const problem_rdft *) p_;
cannam@127 136
cannam@127 137 n = p->sz->dims[0].n - 1;
cannam@127 138 A(n > 0);
cannam@127 139 buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS);
cannam@127 140
cannam@127 141 cld = X(mkplan_d)(plnr,X(mkproblem_rdft_1_d)(X(mktensor_1d)(2*n,1,1),
cannam@127 142 X(mktensor_0d)(),
cannam@127 143 buf, buf, R2HC));
cannam@127 144 if (!cld)
cannam@127 145 goto nada;
cannam@127 146
cannam@127 147 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
cannam@127 148 cldcpy =
cannam@127 149 X(mkplan_d)(plnr,
cannam@127 150 X(mkproblem_rdft_1_d)(X(mktensor_0d)(),
cannam@127 151 X(mktensor_1d)(n+1,1,
cannam@127 152 p->sz->dims[0].os),
cannam@127 153 buf, TAINT(p->O, ovs), R2HC));
cannam@127 154 if (!cldcpy)
cannam@127 155 goto nada;
cannam@127 156
cannam@127 157 X(ifree)(buf);
cannam@127 158
cannam@127 159 pln = MKPLAN_RDFT(P, &padt, apply);
cannam@127 160
cannam@127 161 pln->n = n;
cannam@127 162 pln->is = p->sz->dims[0].is;
cannam@127 163 pln->cld = cld;
cannam@127 164 pln->cldcpy = cldcpy;
cannam@127 165 pln->vl = vl;
cannam@127 166 pln->ivs = ivs;
cannam@127 167 pln->ovs = ovs;
cannam@127 168
cannam@127 169 X(ops_zero)(&ops);
cannam@127 170 ops.other = n + 2*n; /* loads + stores (input -> buf) */
cannam@127 171
cannam@127 172 X(ops_zero)(&pln->super.super.ops);
cannam@127 173 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
cannam@127 174 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
cannam@127 175 X(ops_madd2)(pln->vl, &cldcpy->ops, &pln->super.super.ops);
cannam@127 176
cannam@127 177 return &(pln->super.super);
cannam@127 178
cannam@127 179 nada:
cannam@127 180 X(ifree0)(buf);
cannam@127 181 if (cld)
cannam@127 182 X(plan_destroy_internal)(cld);
cannam@127 183 return (plan *)0;
cannam@127 184 }
cannam@127 185
cannam@127 186 /* constructor */
cannam@127 187 static solver *mksolver(void)
cannam@127 188 {
cannam@127 189 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@127 190 S *slv = MKSOLVER(S, &sadt);
cannam@127 191 return &(slv->super);
cannam@127 192 }
cannam@127 193
cannam@127 194 void X(redft00e_r2hc_pad_register)(planner *p)
cannam@127 195 {
cannam@127 196 REGISTER_SOLVER(p, mksolver());
cannam@127 197 }