annotate src/fftw-3.3.5/rdft/simd/common/hc2cbdftv_4.c @ 148:b4bfdf10c4b3

Update Win64 capnp builds to v0.6
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 22 May 2017 18:56:49 +0100
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:52:42 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dif -sign 1 -name hc2cbdftv_4 -include hc2cbv.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 15 FP additions, 12 FP multiplications,
cannam@127 32 * (or, 9 additions, 6 multiplications, 6 fused multiply/add),
cannam@127 33 * 20 stack variables, 0 constants, and 8 memory accesses
cannam@127 34 */
cannam@127 35 #include "hc2cbv.h"
cannam@127 36
cannam@127 37 static void hc2cbdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 {
cannam@127 40 INT m;
cannam@127 41 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@127 42 V T2, T3, T5, T6, Tf, T1, T9, Ta, T4, Tb, T7, Tc, Th, T8, Tg;
cannam@127 43 V Te, Td, Ti, Tj;
cannam@127 44 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 45 T3 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 46 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 47 T6 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 48 Tf = LDW(&(W[0]));
cannam@127 49 T1 = LDW(&(W[TWVL * 4]));
cannam@127 50 T9 = LDW(&(W[TWVL * 2]));
cannam@127 51 Ta = VFMACONJ(T3, T2);
cannam@127 52 T4 = VFNMSCONJ(T3, T2);
cannam@127 53 Tb = VFMACONJ(T6, T5);
cannam@127 54 T7 = VFNMSCONJ(T6, T5);
cannam@127 55 Tc = VZMUL(T9, VSUB(Ta, Tb));
cannam@127 56 Th = VADD(Ta, Tb);
cannam@127 57 T8 = VZMULI(T1, VFNMSI(T7, T4));
cannam@127 58 Tg = VZMULI(Tf, VFMAI(T7, T4));
cannam@127 59 Te = VCONJ(VSUB(Tc, T8));
cannam@127 60 Td = VADD(T8, Tc);
cannam@127 61 Ti = VADD(Tg, Th);
cannam@127 62 Tj = VCONJ(VSUB(Th, Tg));
cannam@127 63 ST(&(Rm[WS(rs, 1)]), Te, -ms, &(Rm[WS(rs, 1)]));
cannam@127 64 ST(&(Rp[WS(rs, 1)]), Td, ms, &(Rp[WS(rs, 1)]));
cannam@127 65 ST(&(Rp[0]), Ti, ms, &(Rp[0]));
cannam@127 66 ST(&(Rm[0]), Tj, -ms, &(Rm[0]));
cannam@127 67 }
cannam@127 68 }
cannam@127 69 VLEAVE();
cannam@127 70 }
cannam@127 71
cannam@127 72 static const tw_instr twinstr[] = {
cannam@127 73 VTW(1, 1),
cannam@127 74 VTW(1, 2),
cannam@127 75 VTW(1, 3),
cannam@127 76 {TW_NEXT, VL, 0}
cannam@127 77 };
cannam@127 78
cannam@127 79 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cbdftv_4"), twinstr, &GENUS, {9, 6, 6, 0} };
cannam@127 80
cannam@127 81 void XSIMD(codelet_hc2cbdftv_4) (planner *p) {
cannam@127 82 X(khc2c_register) (p, hc2cbdftv_4, &desc, HC2C_VIA_DFT);
cannam@127 83 }
cannam@127 84 #else /* HAVE_FMA */
cannam@127 85
cannam@127 86 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dif -sign 1 -name hc2cbdftv_4 -include hc2cbv.h */
cannam@127 87
cannam@127 88 /*
cannam@127 89 * This function contains 15 FP additions, 6 FP multiplications,
cannam@127 90 * (or, 15 additions, 6 multiplications, 0 fused multiply/add),
cannam@127 91 * 22 stack variables, 0 constants, and 8 memory accesses
cannam@127 92 */
cannam@127 93 #include "hc2cbv.h"
cannam@127 94
cannam@127 95 static void hc2cbdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 96 {
cannam@127 97 {
cannam@127 98 INT m;
cannam@127 99 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@127 100 V T5, Tc, T9, Td, T2, T4, T3, T6, T8, T7, Tj, Ti, Th, Tk, Tl;
cannam@127 101 V Ta, Te, T1, Tb, Tf, Tg;
cannam@127 102 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 103 T3 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 104 T4 = VCONJ(T3);
cannam@127 105 T5 = VSUB(T2, T4);
cannam@127 106 Tc = VADD(T2, T4);
cannam@127 107 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 108 T7 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 109 T8 = VCONJ(T7);
cannam@127 110 T9 = VBYI(VSUB(T6, T8));
cannam@127 111 Td = VADD(T6, T8);
cannam@127 112 Tj = VADD(Tc, Td);
cannam@127 113 Th = LDW(&(W[0]));
cannam@127 114 Ti = VZMULI(Th, VADD(T5, T9));
cannam@127 115 Tk = VADD(Ti, Tj);
cannam@127 116 ST(&(Rp[0]), Tk, ms, &(Rp[0]));
cannam@127 117 Tl = VCONJ(VSUB(Tj, Ti));
cannam@127 118 ST(&(Rm[0]), Tl, -ms, &(Rm[0]));
cannam@127 119 T1 = LDW(&(W[TWVL * 4]));
cannam@127 120 Ta = VZMULI(T1, VSUB(T5, T9));
cannam@127 121 Tb = LDW(&(W[TWVL * 2]));
cannam@127 122 Te = VZMUL(Tb, VSUB(Tc, Td));
cannam@127 123 Tf = VADD(Ta, Te);
cannam@127 124 ST(&(Rp[WS(rs, 1)]), Tf, ms, &(Rp[WS(rs, 1)]));
cannam@127 125 Tg = VCONJ(VSUB(Te, Ta));
cannam@127 126 ST(&(Rm[WS(rs, 1)]), Tg, -ms, &(Rm[WS(rs, 1)]));
cannam@127 127 }
cannam@127 128 }
cannam@127 129 VLEAVE();
cannam@127 130 }
cannam@127 131
cannam@127 132 static const tw_instr twinstr[] = {
cannam@127 133 VTW(1, 1),
cannam@127 134 VTW(1, 2),
cannam@127 135 VTW(1, 3),
cannam@127 136 {TW_NEXT, VL, 0}
cannam@127 137 };
cannam@127 138
cannam@127 139 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cbdftv_4"), twinstr, &GENUS, {15, 6, 0, 0} };
cannam@127 140
cannam@127 141 void XSIMD(codelet_hc2cbdftv_4) (planner *p) {
cannam@127 142 X(khc2c_register) (p, hc2cbdftv_4, &desc, HC2C_VIA_DFT);
cannam@127 143 }
cannam@127 144 #endif /* HAVE_FMA */