annotate src/fftw-3.3.5/rdft/simd/common/hc2cbdftv_16.c @ 148:b4bfdf10c4b3

Update Win64 capnp builds to v0.6
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 22 May 2017 18:56:49 +0100
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:52:44 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dif -sign 1 -name hc2cbdftv_16 -include hc2cbv.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 103 FP additions, 80 FP multiplications,
cannam@127 32 * (or, 53 additions, 30 multiplications, 50 fused multiply/add),
cannam@127 33 * 123 stack variables, 3 constants, and 32 memory accesses
cannam@127 34 */
cannam@127 35 #include "hc2cbv.h"
cannam@127 36
cannam@127 37 static void hc2cbdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
cannam@127 40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
cannam@127 41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 42 {
cannam@127 43 INT m;
cannam@127 44 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) {
cannam@127 45 V T1D, T1F, TV, TW, T17, T18, T1B, T1A, T1H, T1G;
cannam@127 46 {
cannam@127 47 V T8, Tv, Tb, TF, Tl, TJ, TP, T1w, TE, T1t, T10, T1p, TG, Te, Tg;
cannam@127 48 V Th, T2, T3, Ts, Tt, T5, T6, Tp, Tq, T9, TA, T4, TC, Tu, TN;
cannam@127 49 V T7, TB, Tr, Ta, Tj, Tk, Tc, Td, TY, TD, TO, TZ, T1Q, T19, T1I;
cannam@127 50 V T1d, Tf, T11, TH, TQ, Ti, TI, T1k, T1K, T1S, T1r, T14, T16, TU, Ty;
cannam@127 51 V T1z, TX, T1o, T1, TK, TR, Tm, T12, T1C, Tz, T15;
cannam@127 52 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 53 T3 = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 54 Ts = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0]));
cannam@127 55 Tt = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 56 T5 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@127 57 T6 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 58 Tp = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 59 Tq = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 60 T9 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 61 TA = VFNMSCONJ(T3, T2);
cannam@127 62 T4 = VFMACONJ(T3, T2);
cannam@127 63 TC = VFMSCONJ(Tt, Ts);
cannam@127 64 Tu = VFMACONJ(Tt, Ts);
cannam@127 65 TN = VFNMSCONJ(T6, T5);
cannam@127 66 T7 = VFMACONJ(T6, T5);
cannam@127 67 TB = VFNMSCONJ(Tq, Tp);
cannam@127 68 Tr = VFMACONJ(Tq, Tp);
cannam@127 69 Ta = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0]));
cannam@127 70 Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 71 Tk = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@127 72 Tc = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 73 Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 74 T8 = VSUB(T4, T7);
cannam@127 75 TY = VADD(T4, T7);
cannam@127 76 TD = VADD(TB, TC);
cannam@127 77 TO = VSUB(TB, TC);
cannam@127 78 Tv = VSUB(Tr, Tu);
cannam@127 79 TZ = VADD(Tr, Tu);
cannam@127 80 Tb = VFMACONJ(Ta, T9);
cannam@127 81 TF = VFNMSCONJ(Ta, T9);
cannam@127 82 Tl = VFMACONJ(Tk, Tj);
cannam@127 83 TJ = VFNMSCONJ(Tk, Tj);
cannam@127 84 TP = VFMA(LDK(KP707106781), TO, TN);
cannam@127 85 T1w = VFNMS(LDK(KP707106781), TO, TN);
cannam@127 86 TE = VFMA(LDK(KP707106781), TD, TA);
cannam@127 87 T1t = VFNMS(LDK(KP707106781), TD, TA);
cannam@127 88 T10 = VADD(TY, TZ);
cannam@127 89 T1p = VSUB(TY, TZ);
cannam@127 90 TG = VFNMSCONJ(Td, Tc);
cannam@127 91 Te = VFMACONJ(Td, Tc);
cannam@127 92 Tg = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 93 Th = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 94 T1Q = LDW(&(W[TWVL * 22]));
cannam@127 95 T19 = LDW(&(W[TWVL * 26]));
cannam@127 96 T1I = LDW(&(W[TWVL * 2]));
cannam@127 97 T1d = LDW(&(W[TWVL * 28]));
cannam@127 98 Tf = VSUB(Tb, Te);
cannam@127 99 T11 = VADD(Tb, Te);
cannam@127 100 TH = VFNMS(LDK(KP414213562), TG, TF);
cannam@127 101 TQ = VFMA(LDK(KP414213562), TF, TG);
cannam@127 102 Ti = VFMACONJ(Th, Tg);
cannam@127 103 TI = VFMSCONJ(Th, Tg);
cannam@127 104 T1k = LDW(&(W[0]));
cannam@127 105 T1K = LDW(&(W[TWVL * 4]));
cannam@127 106 T1S = LDW(&(W[TWVL * 24]));
cannam@127 107 TX = LDW(&(W[TWVL * 14]));
cannam@127 108 T1o = LDW(&(W[TWVL * 6]));
cannam@127 109 T1 = LDW(&(W[TWVL * 10]));
cannam@127 110 TK = VFMA(LDK(KP414213562), TJ, TI);
cannam@127 111 TR = VFNMS(LDK(KP414213562), TI, TJ);
cannam@127 112 Tm = VSUB(Ti, Tl);
cannam@127 113 T12 = VADD(Ti, Tl);
cannam@127 114 T1C = LDW(&(W[TWVL * 18]));
cannam@127 115 Tz = LDW(&(W[TWVL * 12]));
cannam@127 116 T15 = LDW(&(W[TWVL * 16]));
cannam@127 117 {
cannam@127 118 V T1v, T1y, T1N, T1g, T1J, T1c, T1U, T1V, T1m, T1n, T1s, TS, T1u, TL, T1x;
cannam@127 119 V T13, T1q, Tn, Tw, T1L, T1f, TT, T1M, T1e, TM, T1R, T1j, T1b, Tx, T1a;
cannam@127 120 V To, T1T, T1l, T1E, T1O, T1P, T1h, T1i;
cannam@127 121 T1s = LDW(&(W[TWVL * 8]));
cannam@127 122 TS = VADD(TQ, TR);
cannam@127 123 T1u = VSUB(TQ, TR);
cannam@127 124 TL = VADD(TH, TK);
cannam@127 125 T1x = VSUB(TH, TK);
cannam@127 126 T13 = VADD(T11, T12);
cannam@127 127 T1q = VSUB(T11, T12);
cannam@127 128 Tn = VADD(Tf, Tm);
cannam@127 129 Tw = VSUB(Tf, Tm);
cannam@127 130 T1L = VFMA(LDK(KP923879532), T1u, T1t);
cannam@127 131 T1v = VFNMS(LDK(KP923879532), T1u, T1t);
cannam@127 132 T1f = VFMA(LDK(KP923879532), TS, TP);
cannam@127 133 TT = VFNMS(LDK(KP923879532), TS, TP);
cannam@127 134 T1M = VFNMS(LDK(KP923879532), T1x, T1w);
cannam@127 135 T1y = VFMA(LDK(KP923879532), T1x, T1w);
cannam@127 136 T1e = VFMA(LDK(KP923879532), TL, TE);
cannam@127 137 TM = VFNMS(LDK(KP923879532), TL, TE);
cannam@127 138 T1r = VZMUL(T1o, VFMAI(T1q, T1p));
cannam@127 139 T1R = VZMUL(T1Q, VFNMSI(T1q, T1p));
cannam@127 140 T14 = VZMUL(TX, VSUB(T10, T13));
cannam@127 141 T1j = VADD(T10, T13);
cannam@127 142 T1b = VFMA(LDK(KP707106781), Tw, Tv);
cannam@127 143 Tx = VFNMS(LDK(KP707106781), Tw, Tv);
cannam@127 144 T1a = VFMA(LDK(KP707106781), Tn, T8);
cannam@127 145 To = VFNMS(LDK(KP707106781), Tn, T8);
cannam@127 146 T1T = VZMULI(T1S, VFMAI(T1M, T1L));
cannam@127 147 T1N = VZMULI(T1K, VFNMSI(T1M, T1L));
cannam@127 148 T16 = VZMULI(T15, VFMAI(TT, TM));
cannam@127 149 TU = VZMULI(Tz, VFNMSI(TT, TM));
cannam@127 150 T1l = VZMULI(T1k, VFMAI(T1f, T1e));
cannam@127 151 T1g = VZMULI(T1d, VFNMSI(T1f, T1e));
cannam@127 152 T1D = VZMUL(T1C, VFMAI(Tx, To));
cannam@127 153 Ty = VZMUL(T1, VFNMSI(Tx, To));
cannam@127 154 T1J = VZMUL(T1I, VFMAI(T1b, T1a));
cannam@127 155 T1c = VZMUL(T19, VFNMSI(T1b, T1a));
cannam@127 156 T1U = VCONJ(VSUB(T1R, T1T));
cannam@127 157 T1V = VADD(T1R, T1T);
cannam@127 158 T1m = VCONJ(VSUB(T1j, T1l));
cannam@127 159 T1n = VADD(T1j, T1l);
cannam@127 160 T1z = VZMULI(T1s, VFMAI(T1y, T1v));
cannam@127 161 T1E = LDW(&(W[TWVL * 20]));
cannam@127 162 T1O = VCONJ(VSUB(T1J, T1N));
cannam@127 163 T1P = VADD(T1J, T1N);
cannam@127 164 T1h = VCONJ(VSUB(T1c, T1g));
cannam@127 165 T1i = VADD(T1c, T1g);
cannam@127 166 ST(&(Rp[WS(rs, 6)]), T1V, ms, &(Rp[0]));
cannam@127 167 ST(&(Rm[WS(rs, 6)]), T1U, -ms, &(Rm[0]));
cannam@127 168 ST(&(Rp[0]), T1n, ms, &(Rp[0]));
cannam@127 169 ST(&(Rm[0]), T1m, -ms, &(Rm[0]));
cannam@127 170 ST(&(Rp[WS(rs, 1)]), T1P, ms, &(Rp[WS(rs, 1)]));
cannam@127 171 ST(&(Rm[WS(rs, 1)]), T1O, -ms, &(Rm[WS(rs, 1)]));
cannam@127 172 ST(&(Rp[WS(rs, 7)]), T1i, ms, &(Rp[WS(rs, 1)]));
cannam@127 173 ST(&(Rm[WS(rs, 7)]), T1h, -ms, &(Rm[WS(rs, 1)]));
cannam@127 174 T1F = VZMULI(T1E, VFNMSI(T1y, T1v));
cannam@127 175 }
cannam@127 176 TV = VCONJ(VSUB(Ty, TU));
cannam@127 177 TW = VADD(Ty, TU);
cannam@127 178 T17 = VCONJ(VSUB(T14, T16));
cannam@127 179 T18 = VADD(T14, T16);
cannam@127 180 T1B = VADD(T1r, T1z);
cannam@127 181 T1A = VCONJ(VSUB(T1r, T1z));
cannam@127 182 }
cannam@127 183 T1H = VADD(T1D, T1F);
cannam@127 184 T1G = VCONJ(VSUB(T1D, T1F));
cannam@127 185 ST(&(Rm[WS(rs, 3)]), TV, -ms, &(Rm[WS(rs, 1)]));
cannam@127 186 ST(&(Rp[WS(rs, 3)]), TW, ms, &(Rp[WS(rs, 1)]));
cannam@127 187 ST(&(Rm[WS(rs, 4)]), T17, -ms, &(Rm[0]));
cannam@127 188 ST(&(Rm[WS(rs, 2)]), T1A, -ms, &(Rm[0]));
cannam@127 189 ST(&(Rp[WS(rs, 2)]), T1B, ms, &(Rp[0]));
cannam@127 190 ST(&(Rp[WS(rs, 4)]), T18, ms, &(Rp[0]));
cannam@127 191 ST(&(Rp[WS(rs, 5)]), T1H, ms, &(Rp[WS(rs, 1)]));
cannam@127 192 ST(&(Rm[WS(rs, 5)]), T1G, -ms, &(Rm[WS(rs, 1)]));
cannam@127 193 }
cannam@127 194 }
cannam@127 195 VLEAVE();
cannam@127 196 }
cannam@127 197
cannam@127 198 static const tw_instr twinstr[] = {
cannam@127 199 VTW(1, 1),
cannam@127 200 VTW(1, 2),
cannam@127 201 VTW(1, 3),
cannam@127 202 VTW(1, 4),
cannam@127 203 VTW(1, 5),
cannam@127 204 VTW(1, 6),
cannam@127 205 VTW(1, 7),
cannam@127 206 VTW(1, 8),
cannam@127 207 VTW(1, 9),
cannam@127 208 VTW(1, 10),
cannam@127 209 VTW(1, 11),
cannam@127 210 VTW(1, 12),
cannam@127 211 VTW(1, 13),
cannam@127 212 VTW(1, 14),
cannam@127 213 VTW(1, 15),
cannam@127 214 {TW_NEXT, VL, 0}
cannam@127 215 };
cannam@127 216
cannam@127 217 static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cbdftv_16"), twinstr, &GENUS, {53, 30, 50, 0} };
cannam@127 218
cannam@127 219 void XSIMD(codelet_hc2cbdftv_16) (planner *p) {
cannam@127 220 X(khc2c_register) (p, hc2cbdftv_16, &desc, HC2C_VIA_DFT);
cannam@127 221 }
cannam@127 222 #else /* HAVE_FMA */
cannam@127 223
cannam@127 224 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dif -sign 1 -name hc2cbdftv_16 -include hc2cbv.h */
cannam@127 225
cannam@127 226 /*
cannam@127 227 * This function contains 103 FP additions, 42 FP multiplications,
cannam@127 228 * (or, 99 additions, 38 multiplications, 4 fused multiply/add),
cannam@127 229 * 83 stack variables, 3 constants, and 32 memory accesses
cannam@127 230 */
cannam@127 231 #include "hc2cbv.h"
cannam@127 232
cannam@127 233 static void hc2cbdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 234 {
cannam@127 235 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
cannam@127 236 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
cannam@127 237 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 238 {
cannam@127 239 INT m;
cannam@127 240 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) {
cannam@127 241 V Tf, T16, TZ, T1C, TI, T1a, TV, T1D, T1F, T1G, Ty, T19, TC, T17, TS;
cannam@127 242 V T10;
cannam@127 243 {
cannam@127 244 V T2, TD, T4, TF, Tc, Tb, Td, T6, T8, T9, T3, TE, Ta, T7, T5;
cannam@127 245 V Te, TX, TY, TG, TH, TT, TU, Tj, TM, Tw, TQ, Tn, TN, Ts, TP;
cannam@127 246 V Tg, Ti, Th, Tt, Tv, Tu, Tk, Tm, Tl, Tr, Tq, Tp, To, Tx, TA;
cannam@127 247 V TB, TO, TR;
cannam@127 248 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 249 TD = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@127 250 T3 = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 251 T4 = VCONJ(T3);
cannam@127 252 TE = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 253 TF = VCONJ(TE);
cannam@127 254 Tc = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0]));
cannam@127 255 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 256 Tb = VCONJ(Ta);
cannam@127 257 Td = VSUB(Tb, Tc);
cannam@127 258 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 259 T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 260 T8 = VCONJ(T7);
cannam@127 261 T9 = VSUB(T6, T8);
cannam@127 262 T5 = VSUB(T2, T4);
cannam@127 263 Te = VMUL(LDK(KP707106781), VADD(T9, Td));
cannam@127 264 Tf = VADD(T5, Te);
cannam@127 265 T16 = VSUB(T5, Te);
cannam@127 266 TX = VADD(T2, T4);
cannam@127 267 TY = VADD(TD, TF);
cannam@127 268 TZ = VSUB(TX, TY);
cannam@127 269 T1C = VADD(TX, TY);
cannam@127 270 TG = VSUB(TD, TF);
cannam@127 271 TH = VMUL(LDK(KP707106781), VSUB(T9, Td));
cannam@127 272 TI = VADD(TG, TH);
cannam@127 273 T1a = VSUB(TH, TG);
cannam@127 274 TT = VADD(T6, T8);
cannam@127 275 TU = VADD(Tb, Tc);
cannam@127 276 TV = VSUB(TT, TU);
cannam@127 277 T1D = VADD(TT, TU);
cannam@127 278 Tg = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 279 Th = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0]));
cannam@127 280 Ti = VCONJ(Th);
cannam@127 281 Tj = VSUB(Tg, Ti);
cannam@127 282 TM = VADD(Tg, Ti);
cannam@127 283 Tt = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 284 Tu = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@127 285 Tv = VCONJ(Tu);
cannam@127 286 Tw = VSUB(Tt, Tv);
cannam@127 287 TQ = VADD(Tt, Tv);
cannam@127 288 Tk = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 289 Tl = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 290 Tm = VCONJ(Tl);
cannam@127 291 Tn = VSUB(Tk, Tm);
cannam@127 292 TN = VADD(Tk, Tm);
cannam@127 293 Tr = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 294 Tp = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 295 Tq = VCONJ(Tp);
cannam@127 296 Ts = VSUB(Tq, Tr);
cannam@127 297 TP = VADD(Tq, Tr);
cannam@127 298 T1F = VADD(TM, TN);
cannam@127 299 T1G = VADD(TP, TQ);
cannam@127 300 To = VFNMS(LDK(KP382683432), Tn, VMUL(LDK(KP923879532), Tj));
cannam@127 301 Tx = VFMA(LDK(KP923879532), Ts, VMUL(LDK(KP382683432), Tw));
cannam@127 302 Ty = VADD(To, Tx);
cannam@127 303 T19 = VSUB(To, Tx);
cannam@127 304 TA = VFMA(LDK(KP382683432), Tj, VMUL(LDK(KP923879532), Tn));
cannam@127 305 TB = VFNMS(LDK(KP382683432), Ts, VMUL(LDK(KP923879532), Tw));
cannam@127 306 TC = VADD(TA, TB);
cannam@127 307 T17 = VSUB(TA, TB);
cannam@127 308 TO = VSUB(TM, TN);
cannam@127 309 TR = VSUB(TP, TQ);
cannam@127 310 TS = VMUL(LDK(KP707106781), VSUB(TO, TR));
cannam@127 311 T10 = VMUL(LDK(KP707106781), VADD(TO, TR));
cannam@127 312 }
cannam@127 313 {
cannam@127 314 V T21, T1W, T1u, T20, T1I, T1O, TK, T1S, T12, T1e, T1k, T1A, T1o, T1w, T1c;
cannam@127 315 V T1M, T1U, T1V, T1T, T1s, T1t, T1r, T1Z, T1E, T1H, T1B, T1N, Tz, TJ, T1;
cannam@127 316 V T1R, TW, T11, TL, T1d, T1i, T1j, T1h, T1z, T1m, T1n, T1l, T1v, T18, T1b;
cannam@127 317 V T15, T1L, T13, T1g, T1X, T23, T14, T1f, T1Y, T22, T1p, T1y, T1J, T1Q, T1q;
cannam@127 318 V T1x, T1K, T1P;
cannam@127 319 T1U = VADD(T1C, T1D);
cannam@127 320 T1V = VADD(T1F, T1G);
cannam@127 321 T21 = VADD(T1U, T1V);
cannam@127 322 T1T = LDW(&(W[TWVL * 14]));
cannam@127 323 T1W = VZMUL(T1T, VSUB(T1U, T1V));
cannam@127 324 T1s = VADD(Tf, Ty);
cannam@127 325 T1t = VBYI(VADD(TI, TC));
cannam@127 326 T1r = LDW(&(W[TWVL * 28]));
cannam@127 327 T1u = VZMULI(T1r, VSUB(T1s, T1t));
cannam@127 328 T1Z = LDW(&(W[0]));
cannam@127 329 T20 = VZMULI(T1Z, VADD(T1s, T1t));
cannam@127 330 T1E = VSUB(T1C, T1D);
cannam@127 331 T1H = VBYI(VSUB(T1F, T1G));
cannam@127 332 T1B = LDW(&(W[TWVL * 22]));
cannam@127 333 T1I = VZMUL(T1B, VSUB(T1E, T1H));
cannam@127 334 T1N = LDW(&(W[TWVL * 6]));
cannam@127 335 T1O = VZMUL(T1N, VADD(T1E, T1H));
cannam@127 336 Tz = VSUB(Tf, Ty);
cannam@127 337 TJ = VBYI(VSUB(TC, TI));
cannam@127 338 T1 = LDW(&(W[TWVL * 12]));
cannam@127 339 TK = VZMULI(T1, VADD(Tz, TJ));
cannam@127 340 T1R = LDW(&(W[TWVL * 16]));
cannam@127 341 T1S = VZMULI(T1R, VSUB(Tz, TJ));
cannam@127 342 TW = VBYI(VSUB(TS, TV));
cannam@127 343 T11 = VSUB(TZ, T10);
cannam@127 344 TL = LDW(&(W[TWVL * 10]));
cannam@127 345 T12 = VZMUL(TL, VADD(TW, T11));
cannam@127 346 T1d = LDW(&(W[TWVL * 18]));
cannam@127 347 T1e = VZMUL(T1d, VSUB(T11, TW));
cannam@127 348 T1i = VBYI(VADD(T1a, T19));
cannam@127 349 T1j = VADD(T16, T17);
cannam@127 350 T1h = LDW(&(W[TWVL * 4]));
cannam@127 351 T1k = VZMULI(T1h, VADD(T1i, T1j));
cannam@127 352 T1z = LDW(&(W[TWVL * 24]));
cannam@127 353 T1A = VZMULI(T1z, VSUB(T1j, T1i));
cannam@127 354 T1m = VBYI(VADD(TV, TS));
cannam@127 355 T1n = VADD(TZ, T10);
cannam@127 356 T1l = LDW(&(W[TWVL * 2]));
cannam@127 357 T1o = VZMUL(T1l, VADD(T1m, T1n));
cannam@127 358 T1v = LDW(&(W[TWVL * 26]));
cannam@127 359 T1w = VZMUL(T1v, VSUB(T1n, T1m));
cannam@127 360 T18 = VSUB(T16, T17);
cannam@127 361 T1b = VBYI(VSUB(T19, T1a));
cannam@127 362 T15 = LDW(&(W[TWVL * 20]));
cannam@127 363 T1c = VZMULI(T15, VSUB(T18, T1b));
cannam@127 364 T1L = LDW(&(W[TWVL * 8]));
cannam@127 365 T1M = VZMULI(T1L, VADD(T1b, T18));
cannam@127 366 T13 = VADD(TK, T12);
cannam@127 367 ST(&(Rp[WS(rs, 3)]), T13, ms, &(Rp[WS(rs, 1)]));
cannam@127 368 T1g = VCONJ(VSUB(T1e, T1c));
cannam@127 369 ST(&(Rm[WS(rs, 5)]), T1g, -ms, &(Rm[WS(rs, 1)]));
cannam@127 370 T1X = VADD(T1S, T1W);
cannam@127 371 ST(&(Rp[WS(rs, 4)]), T1X, ms, &(Rp[0]));
cannam@127 372 T23 = VCONJ(VSUB(T21, T20));
cannam@127 373 ST(&(Rm[0]), T23, -ms, &(Rm[0]));
cannam@127 374 T14 = VCONJ(VSUB(T12, TK));
cannam@127 375 ST(&(Rm[WS(rs, 3)]), T14, -ms, &(Rm[WS(rs, 1)]));
cannam@127 376 T1f = VADD(T1c, T1e);
cannam@127 377 ST(&(Rp[WS(rs, 5)]), T1f, ms, &(Rp[WS(rs, 1)]));
cannam@127 378 T1Y = VCONJ(VSUB(T1W, T1S));
cannam@127 379 ST(&(Rm[WS(rs, 4)]), T1Y, -ms, &(Rm[0]));
cannam@127 380 T22 = VADD(T20, T21);
cannam@127 381 ST(&(Rp[0]), T22, ms, &(Rp[0]));
cannam@127 382 T1p = VADD(T1k, T1o);
cannam@127 383 ST(&(Rp[WS(rs, 1)]), T1p, ms, &(Rp[WS(rs, 1)]));
cannam@127 384 T1y = VCONJ(VSUB(T1w, T1u));
cannam@127 385 ST(&(Rm[WS(rs, 7)]), T1y, -ms, &(Rm[WS(rs, 1)]));
cannam@127 386 T1J = VADD(T1A, T1I);
cannam@127 387 ST(&(Rp[WS(rs, 6)]), T1J, ms, &(Rp[0]));
cannam@127 388 T1Q = VCONJ(VSUB(T1O, T1M));
cannam@127 389 ST(&(Rm[WS(rs, 2)]), T1Q, -ms, &(Rm[0]));
cannam@127 390 T1q = VCONJ(VSUB(T1o, T1k));
cannam@127 391 ST(&(Rm[WS(rs, 1)]), T1q, -ms, &(Rm[WS(rs, 1)]));
cannam@127 392 T1x = VADD(T1u, T1w);
cannam@127 393 ST(&(Rp[WS(rs, 7)]), T1x, ms, &(Rp[WS(rs, 1)]));
cannam@127 394 T1K = VCONJ(VSUB(T1I, T1A));
cannam@127 395 ST(&(Rm[WS(rs, 6)]), T1K, -ms, &(Rm[0]));
cannam@127 396 T1P = VADD(T1M, T1O);
cannam@127 397 ST(&(Rp[WS(rs, 2)]), T1P, ms, &(Rp[0]));
cannam@127 398 }
cannam@127 399 }
cannam@127 400 }
cannam@127 401 VLEAVE();
cannam@127 402 }
cannam@127 403
cannam@127 404 static const tw_instr twinstr[] = {
cannam@127 405 VTW(1, 1),
cannam@127 406 VTW(1, 2),
cannam@127 407 VTW(1, 3),
cannam@127 408 VTW(1, 4),
cannam@127 409 VTW(1, 5),
cannam@127 410 VTW(1, 6),
cannam@127 411 VTW(1, 7),
cannam@127 412 VTW(1, 8),
cannam@127 413 VTW(1, 9),
cannam@127 414 VTW(1, 10),
cannam@127 415 VTW(1, 11),
cannam@127 416 VTW(1, 12),
cannam@127 417 VTW(1, 13),
cannam@127 418 VTW(1, 14),
cannam@127 419 VTW(1, 15),
cannam@127 420 {TW_NEXT, VL, 0}
cannam@127 421 };
cannam@127 422
cannam@127 423 static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cbdftv_16"), twinstr, &GENUS, {99, 38, 4, 0} };
cannam@127 424
cannam@127 425 void XSIMD(codelet_hc2cbdftv_16) (planner *p) {
cannam@127 426 X(khc2c_register) (p, hc2cbdftv_16, &desc, HC2C_VIA_DFT);
cannam@127 427 }
cannam@127 428 #endif /* HAVE_FMA */