annotate src/fftw-3.3.5/rdft/scalar/r2cb/r2cb_11.c @ 148:b4bfdf10c4b3

Update Win64 capnp builds to v0.6
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 22 May 2017 18:56:49 +0100
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:49:26 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 11 -name r2cb_11 -include r2cb.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 60 FP additions, 56 FP multiplications,
cannam@127 32 * (or, 4 additions, 0 multiplications, 56 fused multiply/add),
cannam@127 33 * 53 stack variables, 11 constants, and 22 memory accesses
cannam@127 34 */
cannam@127 35 #include "r2cb.h"
cannam@127 36
cannam@127 37 static void r2cb_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
cannam@127 38 {
cannam@127 39 DK(KP1_979642883, +1.979642883761865464752184075553437574753038744);
cannam@127 40 DK(KP1_918985947, +1.918985947228994779780736114132655398124909697);
cannam@127 41 DK(KP876768831, +0.876768831002589333891339807079336796764054852);
cannam@127 42 DK(KP918985947, +0.918985947228994779780736114132655398124909697);
cannam@127 43 DK(KP778434453, +0.778434453334651800608337670740821884709317477);
cannam@127 44 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
cannam@127 45 DK(KP634356270, +0.634356270682424498893150776899916060542806975);
cannam@127 46 DK(KP342584725, +0.342584725681637509502641509861112333758894680);
cannam@127 47 DK(KP830830026, +0.830830026003772851058548298459246407048009821);
cannam@127 48 DK(KP715370323, +0.715370323453429719112414662767260662417897278);
cannam@127 49 DK(KP521108558, +0.521108558113202722944698153526659300680427422);
cannam@127 50 {
cannam@127 51 INT i;
cannam@127 52 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) {
cannam@127 53 E Tf, Tq, Tt, Tu;
cannam@127 54 {
cannam@127 55 E T1, Td, Th, Te, Tg, T2, Ts, TK, TB, TT, Tj, T6, T3, T4, T5;
cannam@127 56 E Tr;
cannam@127 57 T1 = Cr[0];
cannam@127 58 Td = Ci[WS(csi, 3)];
cannam@127 59 Th = Ci[WS(csi, 5)];
cannam@127 60 Te = Ci[WS(csi, 2)];
cannam@127 61 Tf = Ci[WS(csi, 4)];
cannam@127 62 Tg = Ci[WS(csi, 1)];
cannam@127 63 Tr = FMA(KP521108558, Td, Th);
cannam@127 64 T2 = Cr[WS(csr, 1)];
cannam@127 65 {
cannam@127 66 E TJ, TA, TS, Ti;
cannam@127 67 TJ = FMA(KP521108558, Tf, Td);
cannam@127 68 TA = FNMS(KP521108558, Te, Tf);
cannam@127 69 TS = FMS(KP521108558, Tg, Te);
cannam@127 70 Ti = FMA(KP521108558, Th, Tg);
cannam@127 71 Ts = FNMS(KP715370323, Tr, Te);
cannam@127 72 TK = FMA(KP715370323, TJ, Tg);
cannam@127 73 TB = FMA(KP715370323, TA, Th);
cannam@127 74 TT = FMA(KP715370323, TS, Td);
cannam@127 75 Tj = FMA(KP715370323, Ti, Tf);
cannam@127 76 T6 = Cr[WS(csr, 5)];
cannam@127 77 }
cannam@127 78 T3 = Cr[WS(csr, 2)];
cannam@127 79 T4 = Cr[WS(csr, 3)];
cannam@127 80 T5 = Cr[WS(csr, 4)];
cannam@127 81 {
cannam@127 82 E TG, Tx, To, Tl, Tb, TU, TQ, TP, Ta;
cannam@127 83 {
cannam@127 84 E Tk, TE, Tv, T8;
cannam@127 85 Tk = FMA(KP830830026, Tj, Te);
cannam@127 86 TE = FNMS(KP342584725, T3, T6);
cannam@127 87 Tv = FNMS(KP342584725, T2, T4);
cannam@127 88 T8 = FNMS(KP342584725, T4, T3);
cannam@127 89 {
cannam@127 90 E T7, Tm, TN, TF;
cannam@127 91 T7 = T2 + T3 + T4 + T5 + T6;
cannam@127 92 Tm = FNMS(KP342584725, T5, T2);
cannam@127 93 TN = FNMS(KP342584725, T6, T5);
cannam@127 94 TF = FNMS(KP634356270, TE, T2);
cannam@127 95 {
cannam@127 96 E Tw, T9, Tn, TO;
cannam@127 97 Tw = FNMS(KP634356270, Tv, T6);
cannam@127 98 T9 = FNMS(KP634356270, T8, T5);
cannam@127 99 R0[0] = FMA(KP2_000000000, T7, T1);
cannam@127 100 Tn = FNMS(KP634356270, Tm, T3);
cannam@127 101 TO = FNMS(KP634356270, TN, T4);
cannam@127 102 TG = FNMS(KP778434453, TF, T4);
cannam@127 103 Tx = FNMS(KP778434453, Tw, T5);
cannam@127 104 Ta = FNMS(KP778434453, T9, T2);
cannam@127 105 To = FNMS(KP778434453, Tn, T6);
cannam@127 106 TP = FNMS(KP778434453, TO, T3);
cannam@127 107 Tl = FMA(KP918985947, Tk, Td);
cannam@127 108 }
cannam@127 109 }
cannam@127 110 }
cannam@127 111 Tb = FNMS(KP876768831, Ta, T6);
cannam@127 112 TU = FNMS(KP830830026, TT, Tf);
cannam@127 113 TQ = FNMS(KP876768831, TP, T2);
cannam@127 114 {
cannam@127 115 E TI, TL, Ty, TC;
cannam@127 116 {
cannam@127 117 E Tc, TV, TR, TH;
cannam@127 118 TH = FNMS(KP876768831, TG, T5);
cannam@127 119 Tc = FNMS(KP1_918985947, Tb, T1);
cannam@127 120 TV = FNMS(KP918985947, TU, Th);
cannam@127 121 TR = FNMS(KP1_918985947, TQ, T1);
cannam@127 122 TI = FNMS(KP1_918985947, TH, T1);
cannam@127 123 R0[WS(rs, 5)] = FMA(KP1_979642883, Tl, Tc);
cannam@127 124 R1[0] = FNMS(KP1_979642883, Tl, Tc);
cannam@127 125 R0[WS(rs, 3)] = FMA(KP1_979642883, TV, TR);
cannam@127 126 R1[WS(rs, 2)] = FNMS(KP1_979642883, TV, TR);
cannam@127 127 TL = FNMS(KP830830026, TK, Th);
cannam@127 128 }
cannam@127 129 Ty = FNMS(KP876768831, Tx, T3);
cannam@127 130 TC = FNMS(KP830830026, TB, Td);
cannam@127 131 {
cannam@127 132 E TM, Tz, TD, Tp;
cannam@127 133 Tp = FNMS(KP876768831, To, T4);
cannam@127 134 TM = FMA(KP918985947, TL, Te);
cannam@127 135 Tz = FNMS(KP1_918985947, Ty, T1);
cannam@127 136 TD = FNMS(KP918985947, TC, Tg);
cannam@127 137 Tq = FNMS(KP1_918985947, Tp, T1);
cannam@127 138 R0[WS(rs, 2)] = FMA(KP1_979642883, TM, TI);
cannam@127 139 R1[WS(rs, 3)] = FNMS(KP1_979642883, TM, TI);
cannam@127 140 R0[WS(rs, 4)] = FMA(KP1_979642883, TD, Tz);
cannam@127 141 R1[WS(rs, 1)] = FNMS(KP1_979642883, TD, Tz);
cannam@127 142 Tt = FMA(KP830830026, Ts, Tg);
cannam@127 143 }
cannam@127 144 }
cannam@127 145 }
cannam@127 146 }
cannam@127 147 Tu = FNMS(KP918985947, Tt, Tf);
cannam@127 148 R0[WS(rs, 1)] = FMA(KP1_979642883, Tu, Tq);
cannam@127 149 R1[WS(rs, 4)] = FNMS(KP1_979642883, Tu, Tq);
cannam@127 150 }
cannam@127 151 }
cannam@127 152 }
cannam@127 153
cannam@127 154 static const kr2c_desc desc = { 11, "r2cb_11", {4, 0, 56, 0}, &GENUS };
cannam@127 155
cannam@127 156 void X(codelet_r2cb_11) (planner *p) {
cannam@127 157 X(kr2c_register) (p, r2cb_11, &desc);
cannam@127 158 }
cannam@127 159
cannam@127 160 #else /* HAVE_FMA */
cannam@127 161
cannam@127 162 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 11 -name r2cb_11 -include r2cb.h */
cannam@127 163
cannam@127 164 /*
cannam@127 165 * This function contains 60 FP additions, 51 FP multiplications,
cannam@127 166 * (or, 19 additions, 10 multiplications, 41 fused multiply/add),
cannam@127 167 * 33 stack variables, 11 constants, and 22 memory accesses
cannam@127 168 */
cannam@127 169 #include "r2cb.h"
cannam@127 170
cannam@127 171 static void r2cb_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
cannam@127 172 {
cannam@127 173 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
cannam@127 174 DK(KP1_918985947, +1.918985947228994779780736114132655398124909697);
cannam@127 175 DK(KP1_309721467, +1.309721467890570128113850144932587106367582399);
cannam@127 176 DK(KP284629676, +0.284629676546570280887585337232739337582102722);
cannam@127 177 DK(KP830830026, +0.830830026003772851058548298459246407048009821);
cannam@127 178 DK(KP1_682507065, +1.682507065662362337723623297838735435026584997);
cannam@127 179 DK(KP563465113, +0.563465113682859395422835830693233798071555798);
cannam@127 180 DK(KP1_511499148, +1.511499148708516567548071687944688840359434890);
cannam@127 181 DK(KP1_979642883, +1.979642883761865464752184075553437574753038744);
cannam@127 182 DK(KP1_819263990, +1.819263990709036742823430766158056920120482102);
cannam@127 183 DK(KP1_081281634, +1.081281634911195164215271908637383390863541216);
cannam@127 184 {
cannam@127 185 INT i;
cannam@127 186 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) {
cannam@127 187 E Td, Tl, Tf, Th, Tj, T1, T2, T6, T5, T4, T3, T7, Tk, Te, Tg;
cannam@127 188 E Ti;
cannam@127 189 {
cannam@127 190 E T8, Tc, T9, Ta, Tb;
cannam@127 191 T8 = Ci[WS(csi, 2)];
cannam@127 192 Tc = Ci[WS(csi, 1)];
cannam@127 193 T9 = Ci[WS(csi, 4)];
cannam@127 194 Ta = Ci[WS(csi, 5)];
cannam@127 195 Tb = Ci[WS(csi, 3)];
cannam@127 196 Td = FMA(KP1_081281634, T8, KP1_819263990 * T9) + FNMA(KP1_979642883, Ta, KP1_511499148 * Tb) - (KP563465113 * Tc);
cannam@127 197 Tl = FMA(KP1_979642883, T8, KP1_819263990 * Ta) + FNMA(KP563465113, T9, KP1_081281634 * Tb) - (KP1_511499148 * Tc);
cannam@127 198 Tf = FMA(KP563465113, T8, KP1_819263990 * Tb) + FNMA(KP1_511499148, Ta, KP1_081281634 * T9) - (KP1_979642883 * Tc);
cannam@127 199 Th = FMA(KP1_081281634, Tc, KP1_819263990 * T8) + FMA(KP1_979642883, Tb, KP1_511499148 * T9) + (KP563465113 * Ta);
cannam@127 200 Tj = FMA(KP563465113, Tb, KP1_979642883 * T9) + FNMS(KP1_511499148, T8, KP1_081281634 * Ta) - (KP1_819263990 * Tc);
cannam@127 201 }
cannam@127 202 T1 = Cr[0];
cannam@127 203 T2 = Cr[WS(csr, 1)];
cannam@127 204 T6 = Cr[WS(csr, 5)];
cannam@127 205 T5 = Cr[WS(csr, 4)];
cannam@127 206 T4 = Cr[WS(csr, 3)];
cannam@127 207 T3 = Cr[WS(csr, 2)];
cannam@127 208 T7 = FMA(KP1_682507065, T3, T1) + FNMS(KP284629676, T6, KP830830026 * T5) + FNMA(KP1_309721467, T4, KP1_918985947 * T2);
cannam@127 209 Tk = FMA(KP1_682507065, T4, T1) + FNMS(KP1_918985947, T5, KP830830026 * T6) + FNMA(KP284629676, T3, KP1_309721467 * T2);
cannam@127 210 Te = FMA(KP830830026, T4, T1) + FNMS(KP1_309721467, T6, KP1_682507065 * T5) + FNMA(KP1_918985947, T3, KP284629676 * T2);
cannam@127 211 Tg = FMA(KP1_682507065, T2, T1) + FNMS(KP1_918985947, T6, KP830830026 * T3) + FNMA(KP1_309721467, T5, KP284629676 * T4);
cannam@127 212 Ti = FMA(KP830830026, T2, T1) + FNMS(KP284629676, T5, KP1_682507065 * T6) + FNMA(KP1_918985947, T4, KP1_309721467 * T3);
cannam@127 213 R0[WS(rs, 3)] = T7 - Td;
cannam@127 214 R0[WS(rs, 4)] = Te - Tf;
cannam@127 215 R0[WS(rs, 2)] = Tk + Tl;
cannam@127 216 R1[WS(rs, 2)] = T7 + Td;
cannam@127 217 R1[WS(rs, 3)] = Tk - Tl;
cannam@127 218 R0[WS(rs, 1)] = Ti + Tj;
cannam@127 219 R1[WS(rs, 1)] = Te + Tf;
cannam@127 220 R0[WS(rs, 5)] = Tg + Th;
cannam@127 221 R1[0] = Tg - Th;
cannam@127 222 R1[WS(rs, 4)] = Ti - Tj;
cannam@127 223 R0[0] = FMA(KP2_000000000, T2 + T3 + T4 + T5 + T6, T1);
cannam@127 224 }
cannam@127 225 }
cannam@127 226 }
cannam@127 227
cannam@127 228 static const kr2c_desc desc = { 11, "r2cb_11", {19, 10, 41, 0}, &GENUS };
cannam@127 229
cannam@127 230 void X(codelet_r2cb_11) (planner *p) {
cannam@127 231 X(kr2c_register) (p, r2cb_11, &desc);
cannam@127 232 }
cannam@127 233
cannam@127 234 #endif /* HAVE_FMA */