cannam@95
|
1 /*
|
cannam@95
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
cannam@95
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
cannam@95
|
4 *
|
cannam@95
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@95
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@95
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@95
|
8 * (at your option) any later version.
|
cannam@95
|
9 *
|
cannam@95
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@95
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@95
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@95
|
13 * GNU General Public License for more details.
|
cannam@95
|
14 *
|
cannam@95
|
15 * You should have received a copy of the GNU General Public License
|
cannam@95
|
16 * along with this program; if not, write to the Free Software
|
cannam@95
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@95
|
18 *
|
cannam@95
|
19 */
|
cannam@95
|
20
|
cannam@95
|
21
|
cannam@95
|
22 /* Do an R{E,O}DFT11 problem via an R2HC problem of the same *odd* size,
|
cannam@95
|
23 with some permutations and post-processing, as described in:
|
cannam@95
|
24
|
cannam@95
|
25 S. C. Chan and K. L. Ho, "Fast algorithms for computing the
|
cannam@95
|
26 discrete cosine transform," IEEE Trans. Circuits Systems II:
|
cannam@95
|
27 Analog & Digital Sig. Proc. 39 (3), 185--190 (1992).
|
cannam@95
|
28
|
cannam@95
|
29 (For even sizes, see reodft11e-radix2.c.)
|
cannam@95
|
30
|
cannam@95
|
31 This algorithm is related to the 8 x n prime-factor-algorithm (PFA)
|
cannam@95
|
32 decomposition of the size 8n "logical" DFT corresponding to the
|
cannam@95
|
33 R{EO}DFT11.
|
cannam@95
|
34
|
cannam@95
|
35 Aside from very confusing notation (several symbols are redefined
|
cannam@95
|
36 from one line to the next), be aware that this paper has some
|
cannam@95
|
37 errors. In particular, the signs are wrong in Eqs. (34-35). Also,
|
cannam@95
|
38 Eqs. (36-37) should be simply C(k) = C(2k + 1 mod N), and similarly
|
cannam@95
|
39 for S (or, equivalently, the second cases should have 2*N - 2*k - 1
|
cannam@95
|
40 instead of N - k - 1). Note also that in their definition of the
|
cannam@95
|
41 DFT, similarly to FFTW's, the exponent's sign is -1, but they
|
cannam@95
|
42 forgot to correspondingly multiply S (the sine terms) by -1.
|
cannam@95
|
43 */
|
cannam@95
|
44
|
cannam@95
|
45 #include "reodft.h"
|
cannam@95
|
46
|
cannam@95
|
47 typedef struct {
|
cannam@95
|
48 solver super;
|
cannam@95
|
49 } S;
|
cannam@95
|
50
|
cannam@95
|
51 typedef struct {
|
cannam@95
|
52 plan_rdft super;
|
cannam@95
|
53 plan *cld;
|
cannam@95
|
54 INT is, os;
|
cannam@95
|
55 INT n;
|
cannam@95
|
56 INT vl;
|
cannam@95
|
57 INT ivs, ovs;
|
cannam@95
|
58 rdft_kind kind;
|
cannam@95
|
59 } P;
|
cannam@95
|
60
|
cannam@95
|
61 static DK(SQRT2, +1.4142135623730950488016887242096980785696718753769);
|
cannam@95
|
62
|
cannam@95
|
63 #define SGN_SET(x, i) ((i) % 2 ? -(x) : (x))
|
cannam@95
|
64
|
cannam@95
|
65 static void apply_re11(const plan *ego_, R *I, R *O)
|
cannam@95
|
66 {
|
cannam@95
|
67 const P *ego = (const P *) ego_;
|
cannam@95
|
68 INT is = ego->is, os = ego->os;
|
cannam@95
|
69 INT i, n = ego->n, n2 = n/2;
|
cannam@95
|
70 INT iv, vl = ego->vl;
|
cannam@95
|
71 INT ivs = ego->ivs, ovs = ego->ovs;
|
cannam@95
|
72 R *buf;
|
cannam@95
|
73
|
cannam@95
|
74 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
cannam@95
|
75
|
cannam@95
|
76 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
cannam@95
|
77 {
|
cannam@95
|
78 INT m;
|
cannam@95
|
79 for (i = 0, m = n2; m < n; ++i, m += 4)
|
cannam@95
|
80 buf[i] = I[is * m];
|
cannam@95
|
81 for (; m < 2 * n; ++i, m += 4)
|
cannam@95
|
82 buf[i] = -I[is * (2*n - m - 1)];
|
cannam@95
|
83 for (; m < 3 * n; ++i, m += 4)
|
cannam@95
|
84 buf[i] = -I[is * (m - 2*n)];
|
cannam@95
|
85 for (; m < 4 * n; ++i, m += 4)
|
cannam@95
|
86 buf[i] = I[is * (4*n - m - 1)];
|
cannam@95
|
87 m -= 4 * n;
|
cannam@95
|
88 for (; i < n; ++i, m += 4)
|
cannam@95
|
89 buf[i] = I[is * m];
|
cannam@95
|
90 }
|
cannam@95
|
91
|
cannam@95
|
92 { /* child plan: R2HC of size n */
|
cannam@95
|
93 plan_rdft *cld = (plan_rdft *) ego->cld;
|
cannam@95
|
94 cld->apply((plan *) cld, buf, buf);
|
cannam@95
|
95 }
|
cannam@95
|
96
|
cannam@95
|
97 /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */
|
cannam@95
|
98 for (i = 0; i + i + 1 < n2; ++i) {
|
cannam@95
|
99 INT k = i + i + 1;
|
cannam@95
|
100 E c1, s1;
|
cannam@95
|
101 E c2, s2;
|
cannam@95
|
102 c1 = buf[k];
|
cannam@95
|
103 c2 = buf[k + 1];
|
cannam@95
|
104 s2 = buf[n - (k + 1)];
|
cannam@95
|
105 s1 = buf[n - k];
|
cannam@95
|
106
|
cannam@95
|
107 O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2) +
|
cannam@95
|
108 SGN_SET(s1, i/2));
|
cannam@95
|
109 O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2) -
|
cannam@95
|
110 SGN_SET(s1, (n-(i+1))/2));
|
cannam@95
|
111
|
cannam@95
|
112 O[os * (n2 - (i+1))] = SQRT2 * (SGN_SET(c2, (n2-i)/2) -
|
cannam@95
|
113 SGN_SET(s2, (n2-(i+1))/2));
|
cannam@95
|
114 O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2) +
|
cannam@95
|
115 SGN_SET(s2, (n2+(i+1))/2));
|
cannam@95
|
116 }
|
cannam@95
|
117 if (i + i + 1 == n2) {
|
cannam@95
|
118 E c, s;
|
cannam@95
|
119 c = buf[n2];
|
cannam@95
|
120 s = buf[n - n2];
|
cannam@95
|
121 O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2) +
|
cannam@95
|
122 SGN_SET(s, i/2));
|
cannam@95
|
123 O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2) +
|
cannam@95
|
124 SGN_SET(s, (i+1)/2));
|
cannam@95
|
125 }
|
cannam@95
|
126 O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2);
|
cannam@95
|
127 }
|
cannam@95
|
128
|
cannam@95
|
129 X(ifree)(buf);
|
cannam@95
|
130 }
|
cannam@95
|
131
|
cannam@95
|
132 /* like for rodft01, rodft11 is obtained from redft11 by
|
cannam@95
|
133 reversing the input and flipping the sign of every other output. */
|
cannam@95
|
134 static void apply_ro11(const plan *ego_, R *I, R *O)
|
cannam@95
|
135 {
|
cannam@95
|
136 const P *ego = (const P *) ego_;
|
cannam@95
|
137 INT is = ego->is, os = ego->os;
|
cannam@95
|
138 INT i, n = ego->n, n2 = n/2;
|
cannam@95
|
139 INT iv, vl = ego->vl;
|
cannam@95
|
140 INT ivs = ego->ivs, ovs = ego->ovs;
|
cannam@95
|
141 R *buf;
|
cannam@95
|
142
|
cannam@95
|
143 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
cannam@95
|
144
|
cannam@95
|
145 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
cannam@95
|
146 {
|
cannam@95
|
147 INT m;
|
cannam@95
|
148 for (i = 0, m = n2; m < n; ++i, m += 4)
|
cannam@95
|
149 buf[i] = I[is * (n - 1 - m)];
|
cannam@95
|
150 for (; m < 2 * n; ++i, m += 4)
|
cannam@95
|
151 buf[i] = -I[is * (m - n)];
|
cannam@95
|
152 for (; m < 3 * n; ++i, m += 4)
|
cannam@95
|
153 buf[i] = -I[is * (3*n - 1 - m)];
|
cannam@95
|
154 for (; m < 4 * n; ++i, m += 4)
|
cannam@95
|
155 buf[i] = I[is * (m - 3*n)];
|
cannam@95
|
156 m -= 4 * n;
|
cannam@95
|
157 for (; i < n; ++i, m += 4)
|
cannam@95
|
158 buf[i] = I[is * (n - 1 - m)];
|
cannam@95
|
159 }
|
cannam@95
|
160
|
cannam@95
|
161 { /* child plan: R2HC of size n */
|
cannam@95
|
162 plan_rdft *cld = (plan_rdft *) ego->cld;
|
cannam@95
|
163 cld->apply((plan *) cld, buf, buf);
|
cannam@95
|
164 }
|
cannam@95
|
165
|
cannam@95
|
166 /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */
|
cannam@95
|
167 for (i = 0; i + i + 1 < n2; ++i) {
|
cannam@95
|
168 INT k = i + i + 1;
|
cannam@95
|
169 INT j;
|
cannam@95
|
170 E c1, s1;
|
cannam@95
|
171 E c2, s2;
|
cannam@95
|
172 c1 = buf[k];
|
cannam@95
|
173 c2 = buf[k + 1];
|
cannam@95
|
174 s2 = buf[n - (k + 1)];
|
cannam@95
|
175 s1 = buf[n - k];
|
cannam@95
|
176
|
cannam@95
|
177 O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2 + i) +
|
cannam@95
|
178 SGN_SET(s1, i/2 + i));
|
cannam@95
|
179 O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2 + i) -
|
cannam@95
|
180 SGN_SET(s1, (n-(i+1))/2 + i));
|
cannam@95
|
181
|
cannam@95
|
182 j = n2 - (i+1);
|
cannam@95
|
183 O[os * j] = SQRT2 * (SGN_SET(c2, (n2-i)/2 + j) -
|
cannam@95
|
184 SGN_SET(s2, (n2-(i+1))/2 + j));
|
cannam@95
|
185 O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2 + j) +
|
cannam@95
|
186 SGN_SET(s2, (n2+(i+1))/2 + j));
|
cannam@95
|
187 }
|
cannam@95
|
188 if (i + i + 1 == n2) {
|
cannam@95
|
189 E c, s;
|
cannam@95
|
190 c = buf[n2];
|
cannam@95
|
191 s = buf[n - n2];
|
cannam@95
|
192 O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2 + i) +
|
cannam@95
|
193 SGN_SET(s, i/2 + i));
|
cannam@95
|
194 O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2 + i) +
|
cannam@95
|
195 SGN_SET(s, (i+1)/2 + i));
|
cannam@95
|
196 }
|
cannam@95
|
197 O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2 + n2);
|
cannam@95
|
198 }
|
cannam@95
|
199
|
cannam@95
|
200 X(ifree)(buf);
|
cannam@95
|
201 }
|
cannam@95
|
202
|
cannam@95
|
203 static void awake(plan *ego_, enum wakefulness wakefulness)
|
cannam@95
|
204 {
|
cannam@95
|
205 P *ego = (P *) ego_;
|
cannam@95
|
206 X(plan_awake)(ego->cld, wakefulness);
|
cannam@95
|
207 }
|
cannam@95
|
208
|
cannam@95
|
209 static void destroy(plan *ego_)
|
cannam@95
|
210 {
|
cannam@95
|
211 P *ego = (P *) ego_;
|
cannam@95
|
212 X(plan_destroy_internal)(ego->cld);
|
cannam@95
|
213 }
|
cannam@95
|
214
|
cannam@95
|
215 static void print(const plan *ego_, printer *p)
|
cannam@95
|
216 {
|
cannam@95
|
217 const P *ego = (const P *) ego_;
|
cannam@95
|
218 p->print(p, "(%se-r2hc-odd-%D%v%(%p%))",
|
cannam@95
|
219 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
|
cannam@95
|
220 }
|
cannam@95
|
221
|
cannam@95
|
222 static int applicable0(const solver *ego_, const problem *p_)
|
cannam@95
|
223 {
|
cannam@95
|
224 const problem_rdft *p = (const problem_rdft *) p_;
|
cannam@95
|
225 UNUSED(ego_);
|
cannam@95
|
226
|
cannam@95
|
227 return (1
|
cannam@95
|
228 && p->sz->rnk == 1
|
cannam@95
|
229 && p->vecsz->rnk <= 1
|
cannam@95
|
230 && p->sz->dims[0].n % 2 == 1
|
cannam@95
|
231 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
|
cannam@95
|
232 );
|
cannam@95
|
233 }
|
cannam@95
|
234
|
cannam@95
|
235 static int applicable(const solver *ego, const problem *p, const planner *plnr)
|
cannam@95
|
236 {
|
cannam@95
|
237 return (!NO_SLOWP(plnr) && applicable0(ego, p));
|
cannam@95
|
238 }
|
cannam@95
|
239
|
cannam@95
|
240 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
cannam@95
|
241 {
|
cannam@95
|
242 P *pln;
|
cannam@95
|
243 const problem_rdft *p;
|
cannam@95
|
244 plan *cld;
|
cannam@95
|
245 R *buf;
|
cannam@95
|
246 INT n;
|
cannam@95
|
247 opcnt ops;
|
cannam@95
|
248
|
cannam@95
|
249 static const plan_adt padt = {
|
cannam@95
|
250 X(rdft_solve), awake, print, destroy
|
cannam@95
|
251 };
|
cannam@95
|
252
|
cannam@95
|
253 if (!applicable(ego_, p_, plnr))
|
cannam@95
|
254 return (plan *)0;
|
cannam@95
|
255
|
cannam@95
|
256 p = (const problem_rdft *) p_;
|
cannam@95
|
257
|
cannam@95
|
258 n = p->sz->dims[0].n;
|
cannam@95
|
259 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
cannam@95
|
260
|
cannam@95
|
261 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
|
cannam@95
|
262 X(mktensor_0d)(),
|
cannam@95
|
263 buf, buf, R2HC));
|
cannam@95
|
264 X(ifree)(buf);
|
cannam@95
|
265 if (!cld)
|
cannam@95
|
266 return (plan *)0;
|
cannam@95
|
267
|
cannam@95
|
268 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
|
cannam@95
|
269 pln->n = n;
|
cannam@95
|
270 pln->is = p->sz->dims[0].is;
|
cannam@95
|
271 pln->os = p->sz->dims[0].os;
|
cannam@95
|
272 pln->cld = cld;
|
cannam@95
|
273 pln->kind = p->kind[0];
|
cannam@95
|
274
|
cannam@95
|
275 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
|
cannam@95
|
276
|
cannam@95
|
277 X(ops_zero)(&ops);
|
cannam@95
|
278 ops.add = n - 1;
|
cannam@95
|
279 ops.mul = n;
|
cannam@95
|
280 ops.other = 4*n;
|
cannam@95
|
281
|
cannam@95
|
282 X(ops_zero)(&pln->super.super.ops);
|
cannam@95
|
283 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
|
cannam@95
|
284 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
|
cannam@95
|
285
|
cannam@95
|
286 return &(pln->super.super);
|
cannam@95
|
287 }
|
cannam@95
|
288
|
cannam@95
|
289 /* constructor */
|
cannam@95
|
290 static solver *mksolver(void)
|
cannam@95
|
291 {
|
cannam@95
|
292 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
cannam@95
|
293 S *slv = MKSOLVER(S, &sadt);
|
cannam@95
|
294 return &(slv->super);
|
cannam@95
|
295 }
|
cannam@95
|
296
|
cannam@95
|
297 void X(reodft11e_r2hc_odd_register)(planner *p)
|
cannam@95
|
298 {
|
cannam@95
|
299 REGISTER_SOLVER(p, mksolver());
|
cannam@95
|
300 }
|