annotate src/fftw-3.3.3/reodft/reodft11e-r2hc-odd.c @ 148:b4bfdf10c4b3

Update Win64 capnp builds to v0.6
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 22 May 2017 18:56:49 +0100
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21
cannam@95 22 /* Do an R{E,O}DFT11 problem via an R2HC problem of the same *odd* size,
cannam@95 23 with some permutations and post-processing, as described in:
cannam@95 24
cannam@95 25 S. C. Chan and K. L. Ho, "Fast algorithms for computing the
cannam@95 26 discrete cosine transform," IEEE Trans. Circuits Systems II:
cannam@95 27 Analog & Digital Sig. Proc. 39 (3), 185--190 (1992).
cannam@95 28
cannam@95 29 (For even sizes, see reodft11e-radix2.c.)
cannam@95 30
cannam@95 31 This algorithm is related to the 8 x n prime-factor-algorithm (PFA)
cannam@95 32 decomposition of the size 8n "logical" DFT corresponding to the
cannam@95 33 R{EO}DFT11.
cannam@95 34
cannam@95 35 Aside from very confusing notation (several symbols are redefined
cannam@95 36 from one line to the next), be aware that this paper has some
cannam@95 37 errors. In particular, the signs are wrong in Eqs. (34-35). Also,
cannam@95 38 Eqs. (36-37) should be simply C(k) = C(2k + 1 mod N), and similarly
cannam@95 39 for S (or, equivalently, the second cases should have 2*N - 2*k - 1
cannam@95 40 instead of N - k - 1). Note also that in their definition of the
cannam@95 41 DFT, similarly to FFTW's, the exponent's sign is -1, but they
cannam@95 42 forgot to correspondingly multiply S (the sine terms) by -1.
cannam@95 43 */
cannam@95 44
cannam@95 45 #include "reodft.h"
cannam@95 46
cannam@95 47 typedef struct {
cannam@95 48 solver super;
cannam@95 49 } S;
cannam@95 50
cannam@95 51 typedef struct {
cannam@95 52 plan_rdft super;
cannam@95 53 plan *cld;
cannam@95 54 INT is, os;
cannam@95 55 INT n;
cannam@95 56 INT vl;
cannam@95 57 INT ivs, ovs;
cannam@95 58 rdft_kind kind;
cannam@95 59 } P;
cannam@95 60
cannam@95 61 static DK(SQRT2, +1.4142135623730950488016887242096980785696718753769);
cannam@95 62
cannam@95 63 #define SGN_SET(x, i) ((i) % 2 ? -(x) : (x))
cannam@95 64
cannam@95 65 static void apply_re11(const plan *ego_, R *I, R *O)
cannam@95 66 {
cannam@95 67 const P *ego = (const P *) ego_;
cannam@95 68 INT is = ego->is, os = ego->os;
cannam@95 69 INT i, n = ego->n, n2 = n/2;
cannam@95 70 INT iv, vl = ego->vl;
cannam@95 71 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@95 72 R *buf;
cannam@95 73
cannam@95 74 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@95 75
cannam@95 76 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@95 77 {
cannam@95 78 INT m;
cannam@95 79 for (i = 0, m = n2; m < n; ++i, m += 4)
cannam@95 80 buf[i] = I[is * m];
cannam@95 81 for (; m < 2 * n; ++i, m += 4)
cannam@95 82 buf[i] = -I[is * (2*n - m - 1)];
cannam@95 83 for (; m < 3 * n; ++i, m += 4)
cannam@95 84 buf[i] = -I[is * (m - 2*n)];
cannam@95 85 for (; m < 4 * n; ++i, m += 4)
cannam@95 86 buf[i] = I[is * (4*n - m - 1)];
cannam@95 87 m -= 4 * n;
cannam@95 88 for (; i < n; ++i, m += 4)
cannam@95 89 buf[i] = I[is * m];
cannam@95 90 }
cannam@95 91
cannam@95 92 { /* child plan: R2HC of size n */
cannam@95 93 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@95 94 cld->apply((plan *) cld, buf, buf);
cannam@95 95 }
cannam@95 96
cannam@95 97 /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */
cannam@95 98 for (i = 0; i + i + 1 < n2; ++i) {
cannam@95 99 INT k = i + i + 1;
cannam@95 100 E c1, s1;
cannam@95 101 E c2, s2;
cannam@95 102 c1 = buf[k];
cannam@95 103 c2 = buf[k + 1];
cannam@95 104 s2 = buf[n - (k + 1)];
cannam@95 105 s1 = buf[n - k];
cannam@95 106
cannam@95 107 O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2) +
cannam@95 108 SGN_SET(s1, i/2));
cannam@95 109 O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2) -
cannam@95 110 SGN_SET(s1, (n-(i+1))/2));
cannam@95 111
cannam@95 112 O[os * (n2 - (i+1))] = SQRT2 * (SGN_SET(c2, (n2-i)/2) -
cannam@95 113 SGN_SET(s2, (n2-(i+1))/2));
cannam@95 114 O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2) +
cannam@95 115 SGN_SET(s2, (n2+(i+1))/2));
cannam@95 116 }
cannam@95 117 if (i + i + 1 == n2) {
cannam@95 118 E c, s;
cannam@95 119 c = buf[n2];
cannam@95 120 s = buf[n - n2];
cannam@95 121 O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2) +
cannam@95 122 SGN_SET(s, i/2));
cannam@95 123 O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2) +
cannam@95 124 SGN_SET(s, (i+1)/2));
cannam@95 125 }
cannam@95 126 O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2);
cannam@95 127 }
cannam@95 128
cannam@95 129 X(ifree)(buf);
cannam@95 130 }
cannam@95 131
cannam@95 132 /* like for rodft01, rodft11 is obtained from redft11 by
cannam@95 133 reversing the input and flipping the sign of every other output. */
cannam@95 134 static void apply_ro11(const plan *ego_, R *I, R *O)
cannam@95 135 {
cannam@95 136 const P *ego = (const P *) ego_;
cannam@95 137 INT is = ego->is, os = ego->os;
cannam@95 138 INT i, n = ego->n, n2 = n/2;
cannam@95 139 INT iv, vl = ego->vl;
cannam@95 140 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@95 141 R *buf;
cannam@95 142
cannam@95 143 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@95 144
cannam@95 145 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@95 146 {
cannam@95 147 INT m;
cannam@95 148 for (i = 0, m = n2; m < n; ++i, m += 4)
cannam@95 149 buf[i] = I[is * (n - 1 - m)];
cannam@95 150 for (; m < 2 * n; ++i, m += 4)
cannam@95 151 buf[i] = -I[is * (m - n)];
cannam@95 152 for (; m < 3 * n; ++i, m += 4)
cannam@95 153 buf[i] = -I[is * (3*n - 1 - m)];
cannam@95 154 for (; m < 4 * n; ++i, m += 4)
cannam@95 155 buf[i] = I[is * (m - 3*n)];
cannam@95 156 m -= 4 * n;
cannam@95 157 for (; i < n; ++i, m += 4)
cannam@95 158 buf[i] = I[is * (n - 1 - m)];
cannam@95 159 }
cannam@95 160
cannam@95 161 { /* child plan: R2HC of size n */
cannam@95 162 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@95 163 cld->apply((plan *) cld, buf, buf);
cannam@95 164 }
cannam@95 165
cannam@95 166 /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */
cannam@95 167 for (i = 0; i + i + 1 < n2; ++i) {
cannam@95 168 INT k = i + i + 1;
cannam@95 169 INT j;
cannam@95 170 E c1, s1;
cannam@95 171 E c2, s2;
cannam@95 172 c1 = buf[k];
cannam@95 173 c2 = buf[k + 1];
cannam@95 174 s2 = buf[n - (k + 1)];
cannam@95 175 s1 = buf[n - k];
cannam@95 176
cannam@95 177 O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2 + i) +
cannam@95 178 SGN_SET(s1, i/2 + i));
cannam@95 179 O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2 + i) -
cannam@95 180 SGN_SET(s1, (n-(i+1))/2 + i));
cannam@95 181
cannam@95 182 j = n2 - (i+1);
cannam@95 183 O[os * j] = SQRT2 * (SGN_SET(c2, (n2-i)/2 + j) -
cannam@95 184 SGN_SET(s2, (n2-(i+1))/2 + j));
cannam@95 185 O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2 + j) +
cannam@95 186 SGN_SET(s2, (n2+(i+1))/2 + j));
cannam@95 187 }
cannam@95 188 if (i + i + 1 == n2) {
cannam@95 189 E c, s;
cannam@95 190 c = buf[n2];
cannam@95 191 s = buf[n - n2];
cannam@95 192 O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2 + i) +
cannam@95 193 SGN_SET(s, i/2 + i));
cannam@95 194 O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2 + i) +
cannam@95 195 SGN_SET(s, (i+1)/2 + i));
cannam@95 196 }
cannam@95 197 O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2 + n2);
cannam@95 198 }
cannam@95 199
cannam@95 200 X(ifree)(buf);
cannam@95 201 }
cannam@95 202
cannam@95 203 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@95 204 {
cannam@95 205 P *ego = (P *) ego_;
cannam@95 206 X(plan_awake)(ego->cld, wakefulness);
cannam@95 207 }
cannam@95 208
cannam@95 209 static void destroy(plan *ego_)
cannam@95 210 {
cannam@95 211 P *ego = (P *) ego_;
cannam@95 212 X(plan_destroy_internal)(ego->cld);
cannam@95 213 }
cannam@95 214
cannam@95 215 static void print(const plan *ego_, printer *p)
cannam@95 216 {
cannam@95 217 const P *ego = (const P *) ego_;
cannam@95 218 p->print(p, "(%se-r2hc-odd-%D%v%(%p%))",
cannam@95 219 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
cannam@95 220 }
cannam@95 221
cannam@95 222 static int applicable0(const solver *ego_, const problem *p_)
cannam@95 223 {
cannam@95 224 const problem_rdft *p = (const problem_rdft *) p_;
cannam@95 225 UNUSED(ego_);
cannam@95 226
cannam@95 227 return (1
cannam@95 228 && p->sz->rnk == 1
cannam@95 229 && p->vecsz->rnk <= 1
cannam@95 230 && p->sz->dims[0].n % 2 == 1
cannam@95 231 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
cannam@95 232 );
cannam@95 233 }
cannam@95 234
cannam@95 235 static int applicable(const solver *ego, const problem *p, const planner *plnr)
cannam@95 236 {
cannam@95 237 return (!NO_SLOWP(plnr) && applicable0(ego, p));
cannam@95 238 }
cannam@95 239
cannam@95 240 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@95 241 {
cannam@95 242 P *pln;
cannam@95 243 const problem_rdft *p;
cannam@95 244 plan *cld;
cannam@95 245 R *buf;
cannam@95 246 INT n;
cannam@95 247 opcnt ops;
cannam@95 248
cannam@95 249 static const plan_adt padt = {
cannam@95 250 X(rdft_solve), awake, print, destroy
cannam@95 251 };
cannam@95 252
cannam@95 253 if (!applicable(ego_, p_, plnr))
cannam@95 254 return (plan *)0;
cannam@95 255
cannam@95 256 p = (const problem_rdft *) p_;
cannam@95 257
cannam@95 258 n = p->sz->dims[0].n;
cannam@95 259 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@95 260
cannam@95 261 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
cannam@95 262 X(mktensor_0d)(),
cannam@95 263 buf, buf, R2HC));
cannam@95 264 X(ifree)(buf);
cannam@95 265 if (!cld)
cannam@95 266 return (plan *)0;
cannam@95 267
cannam@95 268 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
cannam@95 269 pln->n = n;
cannam@95 270 pln->is = p->sz->dims[0].is;
cannam@95 271 pln->os = p->sz->dims[0].os;
cannam@95 272 pln->cld = cld;
cannam@95 273 pln->kind = p->kind[0];
cannam@95 274
cannam@95 275 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
cannam@95 276
cannam@95 277 X(ops_zero)(&ops);
cannam@95 278 ops.add = n - 1;
cannam@95 279 ops.mul = n;
cannam@95 280 ops.other = 4*n;
cannam@95 281
cannam@95 282 X(ops_zero)(&pln->super.super.ops);
cannam@95 283 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
cannam@95 284 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
cannam@95 285
cannam@95 286 return &(pln->super.super);
cannam@95 287 }
cannam@95 288
cannam@95 289 /* constructor */
cannam@95 290 static solver *mksolver(void)
cannam@95 291 {
cannam@95 292 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@95 293 S *slv = MKSOLVER(S, &sadt);
cannam@95 294 return &(slv->super);
cannam@95 295 }
cannam@95 296
cannam@95 297 void X(reodft11e_r2hc_odd_register)(planner *p)
cannam@95 298 {
cannam@95 299 REGISTER_SOLVER(p, mksolver());
cannam@95 300 }