annotate src/fftw-3.3.3/libbench2/verify-rdft2.c @ 148:b4bfdf10c4b3

Update Win64 capnp builds to v0.6
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 22 May 2017 18:56:49 +0100
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21
cannam@95 22 #include "verify.h"
cannam@95 23
cannam@95 24 /* copy real A into real B, using output stride of A and input stride of B */
cannam@95 25 typedef struct {
cannam@95 26 dotens2_closure k;
cannam@95 27 R *ra;
cannam@95 28 R *rb;
cannam@95 29 } cpyr_closure;
cannam@95 30
cannam@95 31 static void cpyr0(dotens2_closure *k_,
cannam@95 32 int indxa, int ondxa, int indxb, int ondxb)
cannam@95 33 {
cannam@95 34 cpyr_closure *k = (cpyr_closure *)k_;
cannam@95 35 k->rb[indxb] = k->ra[ondxa];
cannam@95 36 UNUSED(indxa); UNUSED(ondxb);
cannam@95 37 }
cannam@95 38
cannam@95 39 static void cpyr(R *ra, const bench_tensor *sza,
cannam@95 40 R *rb, const bench_tensor *szb)
cannam@95 41 {
cannam@95 42 cpyr_closure k;
cannam@95 43 k.k.apply = cpyr0;
cannam@95 44 k.ra = ra; k.rb = rb;
cannam@95 45 bench_dotens2(sza, szb, &k.k);
cannam@95 46 }
cannam@95 47
cannam@95 48 /* copy unpacked halfcomplex A[n] into packed-complex B[n], using output stride
cannam@95 49 of A and input stride of B. Only copies non-redundant half; other
cannam@95 50 half must be copied via mkhermitian. */
cannam@95 51 typedef struct {
cannam@95 52 dotens2_closure k;
cannam@95 53 int n;
cannam@95 54 int as;
cannam@95 55 int scalea;
cannam@95 56 R *ra, *ia;
cannam@95 57 R *rb, *ib;
cannam@95 58 } cpyhc2_closure;
cannam@95 59
cannam@95 60 static void cpyhc20(dotens2_closure *k_,
cannam@95 61 int indxa, int ondxa, int indxb, int ondxb)
cannam@95 62 {
cannam@95 63 cpyhc2_closure *k = (cpyhc2_closure *)k_;
cannam@95 64 int i, n = k->n;
cannam@95 65 int scalea = k->scalea;
cannam@95 66 int as = k->as * scalea;
cannam@95 67 R *ra = k->ra + ondxa * scalea, *ia = k->ia + ondxa * scalea;
cannam@95 68 R *rb = k->rb + indxb, *ib = k->ib + indxb;
cannam@95 69 UNUSED(indxa); UNUSED(ondxb);
cannam@95 70
cannam@95 71 for (i = 0; i < n/2 + 1; ++i) {
cannam@95 72 rb[2*i] = ra[as*i];
cannam@95 73 ib[2*i] = ia[as*i];
cannam@95 74 }
cannam@95 75 }
cannam@95 76
cannam@95 77 static void cpyhc2(R *ra, R *ia,
cannam@95 78 const bench_tensor *sza, const bench_tensor *vecsza,
cannam@95 79 int scalea,
cannam@95 80 R *rb, R *ib, const bench_tensor *szb)
cannam@95 81 {
cannam@95 82 cpyhc2_closure k;
cannam@95 83 BENCH_ASSERT(sza->rnk <= 1);
cannam@95 84 k.k.apply = cpyhc20;
cannam@95 85 k.n = tensor_sz(sza);
cannam@95 86 k.scalea = scalea;
cannam@95 87 if (!FINITE_RNK(sza->rnk) || sza->rnk == 0)
cannam@95 88 k.as = 0;
cannam@95 89 else
cannam@95 90 k.as = sza->dims[0].os;
cannam@95 91 k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
cannam@95 92 bench_dotens2(vecsza, szb, &k.k);
cannam@95 93 }
cannam@95 94
cannam@95 95 /* icpyhc2 is the inverse of cpyhc2 */
cannam@95 96
cannam@95 97 static void icpyhc20(dotens2_closure *k_,
cannam@95 98 int indxa, int ondxa, int indxb, int ondxb)
cannam@95 99 {
cannam@95 100 cpyhc2_closure *k = (cpyhc2_closure *)k_;
cannam@95 101 int i, n = k->n;
cannam@95 102 int scalea = k->scalea;
cannam@95 103 int as = k->as * scalea;
cannam@95 104 R *ra = k->ra + indxa * scalea, *ia = k->ia + indxa * scalea;
cannam@95 105 R *rb = k->rb + ondxb, *ib = k->ib + ondxb;
cannam@95 106 UNUSED(ondxa); UNUSED(indxb);
cannam@95 107
cannam@95 108 for (i = 0; i < n/2 + 1; ++i) {
cannam@95 109 ra[as*i] = rb[2*i];
cannam@95 110 ia[as*i] = ib[2*i];
cannam@95 111 }
cannam@95 112 }
cannam@95 113
cannam@95 114 static void icpyhc2(R *ra, R *ia,
cannam@95 115 const bench_tensor *sza, const bench_tensor *vecsza,
cannam@95 116 int scalea,
cannam@95 117 R *rb, R *ib, const bench_tensor *szb)
cannam@95 118 {
cannam@95 119 cpyhc2_closure k;
cannam@95 120 BENCH_ASSERT(sza->rnk <= 1);
cannam@95 121 k.k.apply = icpyhc20;
cannam@95 122 k.n = tensor_sz(sza);
cannam@95 123 k.scalea = scalea;
cannam@95 124 if (!FINITE_RNK(sza->rnk) || sza->rnk == 0)
cannam@95 125 k.as = 0;
cannam@95 126 else
cannam@95 127 k.as = sza->dims[0].is;
cannam@95 128 k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
cannam@95 129 bench_dotens2(vecsza, szb, &k.k);
cannam@95 130 }
cannam@95 131
cannam@95 132 typedef struct {
cannam@95 133 dofft_closure k;
cannam@95 134 bench_problem *p;
cannam@95 135 } dofft_rdft2_closure;
cannam@95 136
cannam@95 137 static void rdft2_apply(dofft_closure *k_,
cannam@95 138 bench_complex *in, bench_complex *out)
cannam@95 139 {
cannam@95 140 dofft_rdft2_closure *k = (dofft_rdft2_closure *)k_;
cannam@95 141 bench_problem *p = k->p;
cannam@95 142 bench_tensor *totalsz, *pckdsz, *totalsz_swap, *pckdsz_swap;
cannam@95 143 bench_tensor *probsz2, *totalsz2, *pckdsz2;
cannam@95 144 bench_tensor *probsz2_swap, *totalsz2_swap, *pckdsz2_swap;
cannam@95 145 bench_real *ri, *ii, *ro, *io;
cannam@95 146 int n2, totalscale;
cannam@95 147
cannam@95 148 totalsz = tensor_append(p->vecsz, p->sz);
cannam@95 149 pckdsz = verify_pack(totalsz, 2);
cannam@95 150 n2 = tensor_sz(totalsz);
cannam@95 151 if (FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0)
cannam@95 152 n2 = (n2 / p->sz->dims[p->sz->rnk - 1].n) *
cannam@95 153 (p->sz->dims[p->sz->rnk - 1].n / 2 + 1);
cannam@95 154 ri = (bench_real *) p->in;
cannam@95 155 ro = (bench_real *) p->out;
cannam@95 156
cannam@95 157 if (FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0 && n2 > 0) {
cannam@95 158 probsz2 = tensor_copy_sub(p->sz, p->sz->rnk - 1, 1);
cannam@95 159 totalsz2 = tensor_copy_sub(totalsz, 0, totalsz->rnk - 1);
cannam@95 160 pckdsz2 = tensor_copy_sub(pckdsz, 0, pckdsz->rnk - 1);
cannam@95 161 }
cannam@95 162 else {
cannam@95 163 probsz2 = mktensor(0);
cannam@95 164 totalsz2 = tensor_copy(totalsz);
cannam@95 165 pckdsz2 = tensor_copy(pckdsz);
cannam@95 166 }
cannam@95 167
cannam@95 168 totalsz_swap = tensor_copy_swapio(totalsz);
cannam@95 169 pckdsz_swap = tensor_copy_swapio(pckdsz);
cannam@95 170 totalsz2_swap = tensor_copy_swapio(totalsz2);
cannam@95 171 pckdsz2_swap = tensor_copy_swapio(pckdsz2);
cannam@95 172 probsz2_swap = tensor_copy_swapio(probsz2);
cannam@95 173
cannam@95 174 /* confusion: the stride is the distance between complex elements
cannam@95 175 when using interleaved format, but it is the distance between
cannam@95 176 real elements when using split format */
cannam@95 177 if (p->split) {
cannam@95 178 ii = p->ini ? (bench_real *) p->ini : ri + n2;
cannam@95 179 io = p->outi ? (bench_real *) p->outi : ro + n2;
cannam@95 180 totalscale = 1;
cannam@95 181 } else {
cannam@95 182 ii = p->ini ? (bench_real *) p->ini : ri + 1;
cannam@95 183 io = p->outi ? (bench_real *) p->outi : ro + 1;
cannam@95 184 totalscale = 2;
cannam@95 185 }
cannam@95 186
cannam@95 187 if (p->sign < 0) { /* R2HC */
cannam@95 188 int N, vN, i;
cannam@95 189 cpyr(&c_re(in[0]), pckdsz, ri, totalsz);
cannam@95 190 after_problem_rcopy_from(p, ri);
cannam@95 191 doit(1, p);
cannam@95 192 after_problem_hccopy_to(p, ro, io);
cannam@95 193 if (k->k.recopy_input)
cannam@95 194 cpyr(ri, totalsz_swap, &c_re(in[0]), pckdsz_swap);
cannam@95 195 cpyhc2(ro, io, probsz2, totalsz2, totalscale,
cannam@95 196 &c_re(out[0]), &c_im(out[0]), pckdsz2);
cannam@95 197 N = tensor_sz(p->sz);
cannam@95 198 vN = tensor_sz(p->vecsz);
cannam@95 199 for (i = 0; i < vN; ++i)
cannam@95 200 mkhermitian(out + i*N, p->sz->rnk, p->sz->dims, 1);
cannam@95 201 }
cannam@95 202 else { /* HC2R */
cannam@95 203 icpyhc2(ri, ii, probsz2, totalsz2, totalscale,
cannam@95 204 &c_re(in[0]), &c_im(in[0]), pckdsz2);
cannam@95 205 after_problem_hccopy_from(p, ri, ii);
cannam@95 206 doit(1, p);
cannam@95 207 after_problem_rcopy_to(p, ro);
cannam@95 208 if (k->k.recopy_input)
cannam@95 209 cpyhc2(ri, ii, probsz2_swap, totalsz2_swap, totalscale,
cannam@95 210 &c_re(in[0]), &c_im(in[0]), pckdsz2_swap);
cannam@95 211 mkreal(out, tensor_sz(pckdsz));
cannam@95 212 cpyr(ro, totalsz, &c_re(out[0]), pckdsz);
cannam@95 213 }
cannam@95 214
cannam@95 215 tensor_destroy(totalsz);
cannam@95 216 tensor_destroy(pckdsz);
cannam@95 217 tensor_destroy(totalsz_swap);
cannam@95 218 tensor_destroy(pckdsz_swap);
cannam@95 219 tensor_destroy(probsz2);
cannam@95 220 tensor_destroy(totalsz2);
cannam@95 221 tensor_destroy(pckdsz2);
cannam@95 222 tensor_destroy(probsz2_swap);
cannam@95 223 tensor_destroy(totalsz2_swap);
cannam@95 224 tensor_destroy(pckdsz2_swap);
cannam@95 225 }
cannam@95 226
cannam@95 227 void verify_rdft2(bench_problem *p, int rounds, double tol, errors *e)
cannam@95 228 {
cannam@95 229 C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
cannam@95 230 int n, vecn, N;
cannam@95 231 dofft_rdft2_closure k;
cannam@95 232
cannam@95 233 BENCH_ASSERT(p->kind == PROBLEM_REAL);
cannam@95 234
cannam@95 235 if (!FINITE_RNK(p->sz->rnk) || !FINITE_RNK(p->vecsz->rnk))
cannam@95 236 return; /* give up */
cannam@95 237
cannam@95 238 k.k.apply = rdft2_apply;
cannam@95 239 k.k.recopy_input = 0;
cannam@95 240 k.p = p;
cannam@95 241
cannam@95 242 if (rounds == 0)
cannam@95 243 rounds = 20; /* default value */
cannam@95 244
cannam@95 245 n = tensor_sz(p->sz);
cannam@95 246 vecn = tensor_sz(p->vecsz);
cannam@95 247 N = n * vecn;
cannam@95 248
cannam@95 249 inA = (C *) bench_malloc(N * sizeof(C));
cannam@95 250 inB = (C *) bench_malloc(N * sizeof(C));
cannam@95 251 inC = (C *) bench_malloc(N * sizeof(C));
cannam@95 252 outA = (C *) bench_malloc(N * sizeof(C));
cannam@95 253 outB = (C *) bench_malloc(N * sizeof(C));
cannam@95 254 outC = (C *) bench_malloc(N * sizeof(C));
cannam@95 255 tmp = (C *) bench_malloc(N * sizeof(C));
cannam@95 256
cannam@95 257 e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC,
cannam@95 258 tmp, rounds, tol);
cannam@95 259 e->l = linear(&k.k, 1, N, inA, inB, inC, outA, outB, outC,
cannam@95 260 tmp, rounds, tol);
cannam@95 261
cannam@95 262 e->s = 0.0;
cannam@95 263 if (p->sign < 0)
cannam@95 264 e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
cannam@95 265 inA, inB, outA, outB,
cannam@95 266 tmp, rounds, tol, TIME_SHIFT));
cannam@95 267 else
cannam@95 268 e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
cannam@95 269 inA, inB, outA, outB,
cannam@95 270 tmp, rounds, tol, FREQ_SHIFT));
cannam@95 271
cannam@95 272 if (!p->in_place && !p->destroy_input)
cannam@95 273 preserves_input(&k.k, p->sign < 0 ? mkreal : mkhermitian1,
cannam@95 274 N, inA, inB, outB, rounds);
cannam@95 275
cannam@95 276 bench_free(tmp);
cannam@95 277 bench_free(outC);
cannam@95 278 bench_free(outB);
cannam@95 279 bench_free(outA);
cannam@95 280 bench_free(inC);
cannam@95 281 bench_free(inB);
cannam@95 282 bench_free(inA);
cannam@95 283 }
cannam@95 284
cannam@95 285 void accuracy_rdft2(bench_problem *p, int rounds, int impulse_rounds,
cannam@95 286 double t[6])
cannam@95 287 {
cannam@95 288 dofft_rdft2_closure k;
cannam@95 289 int n;
cannam@95 290 C *a, *b;
cannam@95 291
cannam@95 292 BENCH_ASSERT(p->kind == PROBLEM_REAL);
cannam@95 293 BENCH_ASSERT(p->sz->rnk == 1);
cannam@95 294 BENCH_ASSERT(p->vecsz->rnk == 0);
cannam@95 295
cannam@95 296 k.k.apply = rdft2_apply;
cannam@95 297 k.k.recopy_input = 0;
cannam@95 298 k.p = p;
cannam@95 299 n = tensor_sz(p->sz);
cannam@95 300
cannam@95 301 a = (C *) bench_malloc(n * sizeof(C));
cannam@95 302 b = (C *) bench_malloc(n * sizeof(C));
cannam@95 303 accuracy_test(&k.k, p->sign < 0 ? mkreal : mkhermitian1, p->sign,
cannam@95 304 n, a, b, rounds, impulse_rounds, t);
cannam@95 305 bench_free(b);
cannam@95 306 bench_free(a);
cannam@95 307 }