annotate src/fftw-3.3.3/genfft/genutil.ml @ 148:b4bfdf10c4b3

Update Win64 capnp builds to v0.6
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 22 May 2017 18:56:49 +0100
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 (*
cannam@95 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
cannam@95 3 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 4 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 5 *
cannam@95 6 * This program is free software; you can redistribute it and/or modify
cannam@95 7 * it under the terms of the GNU General Public License as published by
cannam@95 8 * the Free Software Foundation; either version 2 of the License, or
cannam@95 9 * (at your option) any later version.
cannam@95 10 *
cannam@95 11 * This program is distributed in the hope that it will be useful,
cannam@95 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 14 * GNU General Public License for more details.
cannam@95 15 *
cannam@95 16 * You should have received a copy of the GNU General Public License
cannam@95 17 * along with this program; if not, write to the Free Software
cannam@95 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 19 *
cannam@95 20 *)
cannam@95 21
cannam@95 22 (* utilities common to all generators *)
cannam@95 23 open Util
cannam@95 24
cannam@95 25 let choose_simd a b = if !Simdmagic.simd_mode then b else a
cannam@95 26
cannam@95 27 let unique_array n = array n (fun _ -> Unique.make ())
cannam@95 28 let unique_array_c n =
cannam@95 29 array n (fun _ ->
cannam@95 30 (Unique.make (), Unique.make ()))
cannam@95 31
cannam@95 32 let unique_v_array_c veclen n =
cannam@95 33 array veclen (fun _ ->
cannam@95 34 unique_array_c n)
cannam@95 35
cannam@95 36 let locative_array_c n rarr iarr loc vs =
cannam@95 37 array n (fun i ->
cannam@95 38 let klass = Unique.make () in
cannam@95 39 let (rloc, iloc) = loc i in
cannam@95 40 (Variable.make_locative rloc klass rarr i vs,
cannam@95 41 Variable.make_locative iloc klass iarr i vs))
cannam@95 42
cannam@95 43 let locative_v_array_c veclen n rarr iarr loc vs =
cannam@95 44 array veclen (fun v ->
cannam@95 45 array n (fun i ->
cannam@95 46 let klass = Unique.make () in
cannam@95 47 let (rloc, iloc) = loc v i in
cannam@95 48 (Variable.make_locative rloc klass (rarr v) i vs,
cannam@95 49 Variable.make_locative iloc klass (iarr v) i vs)))
cannam@95 50
cannam@95 51 let temporary_array n =
cannam@95 52 array n (fun i -> Variable.make_temporary ())
cannam@95 53
cannam@95 54 let temporary_array_c n =
cannam@95 55 let tmpr = temporary_array n
cannam@95 56 and tmpi = temporary_array n
cannam@95 57 in
cannam@95 58 array n (fun i -> (tmpr i, tmpi i))
cannam@95 59
cannam@95 60 let temporary_v_array_c veclen n =
cannam@95 61 array veclen (fun v -> temporary_array_c n)
cannam@95 62
cannam@95 63 let temporary_array_c n =
cannam@95 64 let tmpr = temporary_array n
cannam@95 65 and tmpi = temporary_array n
cannam@95 66 in
cannam@95 67 array n (fun i -> (tmpr i, tmpi i))
cannam@95 68
cannam@95 69 let load_c (vr, vi) = Complex.make (Expr.Load vr, Expr.Load vi)
cannam@95 70 let load_r (vr, vi) = Complex.make (Expr.Load vr, Expr.Num (Number.zero))
cannam@95 71
cannam@95 72 let twiddle_array nt w =
cannam@95 73 array (nt/2) (fun i ->
cannam@95 74 let stride = choose_simd (C.SInteger 1) (C.SConst "TWVL")
cannam@95 75 and klass = Unique.make () in
cannam@95 76 let (refr, refi) = (C.array_subscript w stride (2 * i),
cannam@95 77 C.array_subscript w stride (2 * i + 1))
cannam@95 78 in
cannam@95 79 let (kr, ki) = (Variable.make_constant klass refr,
cannam@95 80 Variable.make_constant klass refi)
cannam@95 81 in
cannam@95 82 load_c (kr, ki))
cannam@95 83
cannam@95 84
cannam@95 85 let load_array_c n var = array n (fun i -> load_c (var i))
cannam@95 86 let load_array_r n var = array n (fun i -> load_r (var i))
cannam@95 87 let load_array_hc n var =
cannam@95 88 array n (fun i ->
cannam@95 89 if (i < n - i) then
cannam@95 90 load_c (var i)
cannam@95 91 else if (i > n - i) then
cannam@95 92 Complex.times Complex.i (load_c (var (n - i)))
cannam@95 93 else
cannam@95 94 load_r (var i))
cannam@95 95
cannam@95 96 let load_v_array_c veclen n var =
cannam@95 97 array veclen (fun v -> load_array_c n (var v))
cannam@95 98
cannam@95 99 let store_c (vr, vi) x = [Complex.store_real vr x; Complex.store_imag vi x]
cannam@95 100 let store_r (vr, vi) x = Complex.store_real vr x
cannam@95 101 let store_i (vr, vi) x = Complex.store_imag vi x
cannam@95 102
cannam@95 103 let assign_array_c n dst src =
cannam@95 104 List.flatten
cannam@95 105 (rmap (iota n)
cannam@95 106 (fun i ->
cannam@95 107 let (ar, ai) = Complex.assign (dst i) (src i)
cannam@95 108 in [ar; ai]))
cannam@95 109 let assign_v_array_c veclen n dst src =
cannam@95 110 List.flatten
cannam@95 111 (rmap (iota veclen)
cannam@95 112 (fun v ->
cannam@95 113 assign_array_c n (dst v) (src v)))
cannam@95 114
cannam@95 115 let vassign_v_array_c veclen n dst src =
cannam@95 116 List.flatten
cannam@95 117 (rmap (iota n) (fun i ->
cannam@95 118 List.flatten
cannam@95 119 (rmap (iota veclen)
cannam@95 120 (fun v ->
cannam@95 121 let (ar, ai) = Complex.assign (dst v i) (src v i)
cannam@95 122 in [ar; ai]))))
cannam@95 123
cannam@95 124 let store_array_r n dst src =
cannam@95 125 rmap (iota n)
cannam@95 126 (fun i -> store_r (dst i) (src i))
cannam@95 127
cannam@95 128 let store_array_c n dst src =
cannam@95 129 List.flatten
cannam@95 130 (rmap (iota n)
cannam@95 131 (fun i -> store_c (dst i) (src i)))
cannam@95 132
cannam@95 133 let store_array_hc n dst src =
cannam@95 134 List.flatten
cannam@95 135 (rmap (iota n)
cannam@95 136 (fun i ->
cannam@95 137 if (i < n - i) then
cannam@95 138 store_c (dst i) (src i)
cannam@95 139 else if (i > n - i) then
cannam@95 140 []
cannam@95 141 else
cannam@95 142 [store_r (dst i) (Complex.real (src i))]))
cannam@95 143
cannam@95 144
cannam@95 145 let store_v_array_c veclen n dst src =
cannam@95 146 List.flatten
cannam@95 147 (rmap (iota veclen)
cannam@95 148 (fun v ->
cannam@95 149 store_array_c n (dst v) (src v)))
cannam@95 150
cannam@95 151
cannam@95 152 let elementwise f n a = array n (fun i -> f (a i))
cannam@95 153 let conj_array_c = elementwise Complex.conj
cannam@95 154 let real_array_c = elementwise Complex.real
cannam@95 155 let imag_array_c = elementwise Complex.imag
cannam@95 156
cannam@95 157 let elementwise_v f veclen n a =
cannam@95 158 array veclen (fun v ->
cannam@95 159 array n (fun i -> f (a v i)))
cannam@95 160 let conj_v_array_c = elementwise_v Complex.conj
cannam@95 161 let real_v_array_c = elementwise_v Complex.real
cannam@95 162 let imag_v_array_c = elementwise_v Complex.imag
cannam@95 163
cannam@95 164
cannam@95 165 let transpose f i j = f j i
cannam@95 166 let symmetrize f i j = if i <= j then f i j else f j i
cannam@95 167
cannam@95 168 (* utilities for command-line parsing *)
cannam@95 169 let standard_arg_parse_fail _ = failwith "too many arguments"
cannam@95 170
cannam@95 171 let dump_dag alist =
cannam@95 172 let fnam = !Magic.dag_dump_file in
cannam@95 173 if (String.length fnam > 0) then
cannam@95 174 let ochan = open_out fnam in
cannam@95 175 begin
cannam@95 176 To_alist.dump (output_string ochan) alist;
cannam@95 177 close_out ochan;
cannam@95 178 end
cannam@95 179
cannam@95 180 let dump_alist alist =
cannam@95 181 let fnam = !Magic.alist_dump_file in
cannam@95 182 if (String.length fnam > 0) then
cannam@95 183 let ochan = open_out fnam in
cannam@95 184 begin
cannam@95 185 Expr.dump (output_string ochan) alist;
cannam@95 186 close_out ochan;
cannam@95 187 end
cannam@95 188
cannam@95 189 let dump_asched asched =
cannam@95 190 let fnam = !Magic.asched_dump_file in
cannam@95 191 if (String.length fnam > 0) then
cannam@95 192 let ochan = open_out fnam in
cannam@95 193 begin
cannam@95 194 Annotate.dump (output_string ochan) asched;
cannam@95 195 close_out ochan;
cannam@95 196 end
cannam@95 197
cannam@95 198 (* utilities for optimization *)
cannam@95 199 let standard_scheduler dag =
cannam@95 200 let optim = Algsimp.algsimp dag in
cannam@95 201 let alist = To_alist.to_assignments optim in
cannam@95 202 let _ = dump_alist alist in
cannam@95 203 let _ = dump_dag alist in
cannam@95 204 if !Magic.precompute_twiddles then
cannam@95 205 Schedule.isolate_precomputations_and_schedule alist
cannam@95 206 else
cannam@95 207 Schedule.schedule alist
cannam@95 208
cannam@95 209 let standard_optimizer dag =
cannam@95 210 let sched = standard_scheduler dag in
cannam@95 211 let annot = Annotate.annotate [] sched in
cannam@95 212 let _ = dump_asched annot in
cannam@95 213 annot
cannam@95 214
cannam@95 215 let size = ref None
cannam@95 216 let sign = ref (-1)
cannam@95 217
cannam@95 218 let speclist = [
cannam@95 219 "-n", Arg.Int(fun i -> size := Some i), " generate a codelet of size <n>";
cannam@95 220 "-sign",
cannam@95 221 Arg.Int(fun i ->
cannam@95 222 if (i > 0) then
cannam@95 223 sign := 1
cannam@95 224 else
cannam@95 225 sign := (-1)),
cannam@95 226 " sign of transform";
cannam@95 227 ]
cannam@95 228
cannam@95 229 let check_size () =
cannam@95 230 match !size with
cannam@95 231 | Some i -> i
cannam@95 232 | None -> failwith "must specify -n"
cannam@95 233
cannam@95 234 let expand_name name = if name = "" then "noname" else name
cannam@95 235
cannam@95 236 let declare_register_fcn name =
cannam@95 237 if name = "" then
cannam@95 238 "void NAME(planner *p)\n"
cannam@95 239 else
cannam@95 240 "void " ^ (choose_simd "X" "XSIMD") ^
cannam@95 241 "(codelet_" ^ name ^ ")(planner *p)\n"
cannam@95 242
cannam@95 243 let stringify name =
cannam@95 244 if name = "" then "STRINGIZE(NAME)" else
cannam@95 245 choose_simd ("\"" ^ name ^ "\"")
cannam@95 246 ("XSIMD_STRING(\"" ^ name ^ "\")")
cannam@95 247
cannam@95 248 let parse user_speclist usage =
cannam@95 249 Arg.parse
cannam@95 250 (user_speclist @ speclist @ Magic.speclist @ Simdmagic.speclist)
cannam@95 251 standard_arg_parse_fail
cannam@95 252 usage
cannam@95 253
cannam@95 254 let rec list_to_c = function
cannam@95 255 [] -> ""
cannam@95 256 | [a] -> (string_of_int a)
cannam@95 257 | a :: b -> (string_of_int a) ^ ", " ^ (list_to_c b)
cannam@95 258
cannam@95 259 let rec list_to_comma = function
cannam@95 260 | [a; b] -> C.Comma (a, b)
cannam@95 261 | a :: b -> C.Comma (a, list_to_comma b)
cannam@95 262 | _ -> failwith "list_to_comma"
cannam@95 263
cannam@95 264
cannam@95 265 type stride = Stride_variable | Fixed_int of int | Fixed_string of string
cannam@95 266
cannam@95 267 let either_stride a b =
cannam@95 268 match a with
cannam@95 269 Fixed_int x -> C.SInteger x
cannam@95 270 | Fixed_string x -> C.SConst x
cannam@95 271 | _ -> b
cannam@95 272
cannam@95 273 let stride_fixed = function
cannam@95 274 Stride_variable -> false
cannam@95 275 | _ -> true
cannam@95 276
cannam@95 277 let arg_to_stride s =
cannam@95 278 try
cannam@95 279 Fixed_int (int_of_string s)
cannam@95 280 with Failure "int_of_string" ->
cannam@95 281 Fixed_string s
cannam@95 282
cannam@95 283 let stride_to_solverparm = function
cannam@95 284 Stride_variable -> "0"
cannam@95 285 | Fixed_int x -> string_of_int x
cannam@95 286 | Fixed_string x -> x
cannam@95 287
cannam@95 288 let stride_to_string s = function
cannam@95 289 Stride_variable -> s
cannam@95 290 | Fixed_int x -> string_of_int x
cannam@95 291 | Fixed_string x -> x
cannam@95 292
cannam@95 293 (* output the command line *)
cannam@95 294 let cmdline () =
cannam@95 295 List.fold_right (fun a b -> a ^ " " ^ b) (Array.to_list Sys.argv) ""
cannam@95 296
cannam@95 297 let unparse tree =
cannam@95 298 "/* Generated by: " ^ (cmdline ()) ^ "*/\n\n" ^
cannam@95 299 (C.print_cost tree) ^
cannam@95 300 (if String.length !Magic.inklude > 0
cannam@95 301 then
cannam@95 302 (Printf.sprintf "#include \"%s\"\n\n" !Magic.inklude)
cannam@95 303 else "") ^
cannam@95 304 (if !Simdmagic.simd_mode then
cannam@95 305 Simd.unparse_function tree
cannam@95 306 else
cannam@95 307 C.unparse_function tree)
cannam@95 308
cannam@95 309 let finalize_fcn ast =
cannam@95 310 let mergedecls = function
cannam@95 311 C.Block (d1, [C.Block (d2, s)]) -> C.Block (d1 @ d2, s)
cannam@95 312 | x -> x
cannam@95 313 and extract_constants =
cannam@95 314 if !Simdmagic.simd_mode then
cannam@95 315 Simd.extract_constants
cannam@95 316 else
cannam@95 317 C.extract_constants
cannam@95 318
cannam@95 319 in mergedecls (C.Block (extract_constants ast, [ast; C.Simd_leavefun]))
cannam@95 320
cannam@95 321 let twinstr_to_string vl x =
cannam@95 322 if !Simdmagic.simd_mode then
cannam@95 323 Twiddle.twinstr_to_simd_string vl x
cannam@95 324 else
cannam@95 325 Twiddle.twinstr_to_c_string x
cannam@95 326
cannam@95 327 let make_volatile_stride n x =
cannam@95 328 C.CCall ("MAKE_VOLATILE_STRIDE", C.Comma((C.Integer n), x))