annotate src/fftw-3.3.3/genfft/complex.ml @ 148:b4bfdf10c4b3

Update Win64 capnp builds to v0.6
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 22 May 2017 18:56:49 +0100
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 (*
cannam@95 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
cannam@95 3 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 4 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 5 *
cannam@95 6 * This program is free software; you can redistribute it and/or modify
cannam@95 7 * it under the terms of the GNU General Public License as published by
cannam@95 8 * the Free Software Foundation; either version 2 of the License, or
cannam@95 9 * (at your option) any later version.
cannam@95 10 *
cannam@95 11 * This program is distributed in the hope that it will be useful,
cannam@95 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 14 * GNU General Public License for more details.
cannam@95 15 *
cannam@95 16 * You should have received a copy of the GNU General Public License
cannam@95 17 * along with this program; if not, write to the Free Software
cannam@95 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 19 *
cannam@95 20 *)
cannam@95 21
cannam@95 22 (* abstraction layer for complex operations *)
cannam@95 23 open Littlesimp
cannam@95 24 open Expr
cannam@95 25
cannam@95 26 (* type of complex expressions *)
cannam@95 27 type expr = CE of Expr.expr * Expr.expr
cannam@95 28
cannam@95 29 let two = CE (makeNum Number.two, makeNum Number.zero)
cannam@95 30 let one = CE (makeNum Number.one, makeNum Number.zero)
cannam@95 31 let i = CE (makeNum Number.zero, makeNum Number.one)
cannam@95 32 let zero = CE (makeNum Number.zero, makeNum Number.zero)
cannam@95 33 let make (r, i) = CE (r, i)
cannam@95 34
cannam@95 35 let uminus (CE (a, b)) = CE (makeUminus a, makeUminus b)
cannam@95 36
cannam@95 37 let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)),
cannam@95 38 makeNum Number.zero)
cannam@95 39
cannam@95 40 let inverse_int_sqrt n =
cannam@95 41 CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))),
cannam@95 42 makeNum Number.zero)
cannam@95 43 let int_sqrt n =
cannam@95 44 CE (makeNum (Number.sqrt (Number.of_int n)),
cannam@95 45 makeNum Number.zero)
cannam@95 46
cannam@95 47 let nan x = CE (NaN x, makeNum Number.zero)
cannam@95 48
cannam@95 49 let half = inverse_int 2
cannam@95 50
cannam@95 51 let times3x3 (CE (a, b)) (CE (c, d)) =
cannam@95 52 CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]);
cannam@95 53 makeTimes (b, makePlus [c; makeUminus (d)])],
cannam@95 54 makePlus [makeTimes (a, makePlus [c; d]);
cannam@95 55 makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))])
cannam@95 56
cannam@95 57 let times (CE (a, b)) (CE (c, d)) =
cannam@95 58 if not !Magic.threemult then
cannam@95 59 CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))],
cannam@95 60 makePlus [makeTimes (a, d); makeTimes (b, c)])
cannam@95 61 else if is_constant c && is_constant d then
cannam@95 62 times3x3 (CE (a, b)) (CE (c, d))
cannam@95 63 else (* hope a and b are constant expressions *)
cannam@95 64 times3x3 (CE (c, d)) (CE (a, b))
cannam@95 65
cannam@95 66 let ctimes (CE (a, _)) (CE (c, _)) =
cannam@95 67 CE (CTimes (a, c), makeNum Number.zero)
cannam@95 68
cannam@95 69 let ctimesj (CE (a, _)) (CE (c, _)) =
cannam@95 70 CE (CTimesJ (a, c), makeNum Number.zero)
cannam@95 71
cannam@95 72 (* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *)
cannam@95 73 let exp n i =
cannam@95 74 let (c, s) = Number.cexp n i
cannam@95 75 in CE (makeNum c, makeNum s)
cannam@95 76
cannam@95 77 (* various trig functions evaluated at (2*pi*i/n * m) *)
cannam@95 78 let sec n m =
cannam@95 79 let (c, s) = Number.cexp n m
cannam@95 80 in CE (makeNum (Number.div Number.one c), makeNum Number.zero)
cannam@95 81 let csc n m =
cannam@95 82 let (c, s) = Number.cexp n m
cannam@95 83 in CE (makeNum (Number.div Number.one s), makeNum Number.zero)
cannam@95 84 let tan n m =
cannam@95 85 let (c, s) = Number.cexp n m
cannam@95 86 in CE (makeNum (Number.div s c), makeNum Number.zero)
cannam@95 87 let cot n m =
cannam@95 88 let (c, s) = Number.cexp n m
cannam@95 89 in CE (makeNum (Number.div c s), makeNum Number.zero)
cannam@95 90
cannam@95 91 (* complex sum *)
cannam@95 92 let plus a =
cannam@95 93 let rec unzip_complex = function
cannam@95 94 [] -> ([], [])
cannam@95 95 | ((CE (a, b)) :: s) ->
cannam@95 96 let (r,i) = unzip_complex s
cannam@95 97 in
cannam@95 98 (a::r), (b::i) in
cannam@95 99 let (c, d) = unzip_complex a in
cannam@95 100 CE (makePlus c, makePlus d)
cannam@95 101
cannam@95 102 (* extract real/imaginary *)
cannam@95 103 let real (CE (a, b)) = CE (a, makeNum Number.zero)
cannam@95 104 let imag (CE (a, b)) = CE (b, makeNum Number.zero)
cannam@95 105 let iimag (CE (a, b)) = CE (makeNum Number.zero, b)
cannam@95 106 let conj (CE (a, b)) = CE (a, makeUminus b)
cannam@95 107
cannam@95 108
cannam@95 109 (* abstraction of sum_{i=0}^{n-1} *)
cannam@95 110 let sigma a b f = plus (List.map f (Util.interval a b))
cannam@95 111
cannam@95 112 (* store and assignment operations *)
cannam@95 113 let store_real v (CE (a, b)) = Expr.Store (v, a)
cannam@95 114 let store_imag v (CE (a, b)) = Expr.Store (v, b)
cannam@95 115 let store (vr, vi) x = (store_real vr x, store_imag vi x)
cannam@95 116
cannam@95 117 let assign_real v (CE (a, b)) = Expr.Assign (v, a)
cannam@95 118 let assign_imag v (CE (a, b)) = Expr.Assign (v, b)
cannam@95 119 let assign (vr, vi) x = (assign_real vr x, assign_imag vi x)
cannam@95 120
cannam@95 121
cannam@95 122 (************************
cannam@95 123 shortcuts
cannam@95 124 ************************)
cannam@95 125 let (@*) = times
cannam@95 126 let (@+) a b = plus [a; b]
cannam@95 127 let (@-) a b = plus [a; uminus b]
cannam@95 128
cannam@95 129 (* type of complex signals *)
cannam@95 130 type signal = int -> expr
cannam@95 131
cannam@95 132 (* make a finite signal infinite *)
cannam@95 133 let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero
cannam@95 134
cannam@95 135 let hermitian n a =
cannam@95 136 Util.array n (fun i ->
cannam@95 137 if (i = 0) then real (a 0)
cannam@95 138 else if (i < n - i) then (a i)
cannam@95 139 else if (i > n - i) then conj (a (n - i))
cannam@95 140 else real (a i))
cannam@95 141
cannam@95 142 let antihermitian n a =
cannam@95 143 Util.array n (fun i ->
cannam@95 144 if (i = 0) then iimag (a 0)
cannam@95 145 else if (i < n - i) then (a i)
cannam@95 146 else if (i > n - i) then uminus (conj (a (n - i)))
cannam@95 147 else iimag (a i))