annotate src/libsndfile-1.0.25/src/G72x/g723_16.c @ 22:b07fe9e906dc

Portaudio: add missed file
author Chris Cannam
date Tue, 26 Mar 2013 12:14:11 +0000
parents c7265573341e
children
rev   line source
Chris@0 1 /*
Chris@0 2 * This source code is a product of Sun Microsystems, Inc. and is provided
Chris@0 3 * for unrestricted use. Users may copy or modify this source code without
Chris@0 4 * charge.
Chris@0 5 *
Chris@0 6 * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
Chris@0 7 * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
Chris@0 8 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
Chris@0 9 *
Chris@0 10 * Sun source code is provided with no support and without any obligation on
Chris@0 11 * the part of Sun Microsystems, Inc. to assist in its use, correction,
Chris@0 12 * modification or enhancement.
Chris@0 13 *
Chris@0 14 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
Chris@0 15 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
Chris@0 16 * OR ANY PART THEREOF.
Chris@0 17 *
Chris@0 18 * In no event will Sun Microsystems, Inc. be liable for any lost revenue
Chris@0 19 * or profits or other special, indirect and consequential damages, even if
Chris@0 20 * Sun has been advised of the possibility of such damages.
Chris@0 21 *
Chris@0 22 * Sun Microsystems, Inc.
Chris@0 23 * 2550 Garcia Avenue
Chris@0 24 * Mountain View, California 94043
Chris@0 25 */
Chris@0 26 /* 16kbps version created, used 24kbps code and changing as little as possible.
Chris@0 27 * G.726 specs are available from ITU's gopher or WWW site (http://www.itu.ch)
Chris@0 28 * If any errors are found, please contact me at mrand@tamu.edu
Chris@0 29 * -Marc Randolph
Chris@0 30 */
Chris@0 31
Chris@0 32 /*
Chris@0 33 * g723_16.c
Chris@0 34 *
Chris@0 35 * Description:
Chris@0 36 *
Chris@0 37 * g723_16_encoder(), g723_16_decoder()
Chris@0 38 *
Chris@0 39 * These routines comprise an implementation of the CCITT G.726 16 Kbps
Chris@0 40 * ADPCM coding algorithm. Essentially, this implementation is identical to
Chris@0 41 * the bit level description except for a few deviations which take advantage
Chris@0 42 * of workstation attributes, such as hardware 2's complement arithmetic.
Chris@0 43 *
Chris@0 44 */
Chris@0 45
Chris@0 46 #include "g72x.h"
Chris@0 47 #include "g72x_priv.h"
Chris@0 48
Chris@0 49 /*
Chris@0 50 * Maps G.723_16 code word to reconstructed scale factor normalized log
Chris@0 51 * magnitude values. Comes from Table 11/G.726
Chris@0 52 */
Chris@0 53 static short _dqlntab[4] = { 116, 365, 365, 116};
Chris@0 54
Chris@0 55 /* Maps G.723_16 code word to log of scale factor multiplier.
Chris@0 56 *
Chris@0 57 * _witab[4] is actually {-22 , 439, 439, -22}, but FILTD wants it
Chris@0 58 * as WI << 5 (multiplied by 32), so we'll do that here
Chris@0 59 */
Chris@0 60 static short _witab[4] = {-704, 14048, 14048, -704};
Chris@0 61
Chris@0 62 /*
Chris@0 63 * Maps G.723_16 code words to a set of values whose long and short
Chris@0 64 * term averages are computed and then compared to give an indication
Chris@0 65 * how stationary (steady state) the signal is.
Chris@0 66 */
Chris@0 67
Chris@0 68 /* Comes from FUNCTF */
Chris@0 69 static short _fitab[4] = {0, 0xE00, 0xE00, 0};
Chris@0 70
Chris@0 71 /* Comes from quantizer decision level tables (Table 7/G.726)
Chris@0 72 */
Chris@0 73 static short qtab_723_16[1] = {261};
Chris@0 74
Chris@0 75
Chris@0 76 /*
Chris@0 77 * g723_16_encoder()
Chris@0 78 *
Chris@0 79 * Encodes a linear PCM, A-law or u-law input sample and returns its 2-bit code.
Chris@0 80 * Returns -1 if invalid input coding value.
Chris@0 81 */
Chris@0 82 int
Chris@0 83 g723_16_encoder(
Chris@0 84 int sl,
Chris@0 85 G72x_STATE *state_ptr)
Chris@0 86 {
Chris@0 87 short sei, sezi, se, sez; /* ACCUM */
Chris@0 88 short d; /* SUBTA */
Chris@0 89 short y; /* MIX */
Chris@0 90 short sr; /* ADDB */
Chris@0 91 short dqsez; /* ADDC */
Chris@0 92 short dq, i;
Chris@0 93
Chris@0 94 /* linearize input sample to 14-bit PCM */
Chris@0 95 sl >>= 2; /* sl of 14-bit dynamic range */
Chris@0 96
Chris@0 97 sezi = predictor_zero(state_ptr);
Chris@0 98 sez = sezi >> 1;
Chris@0 99 sei = sezi + predictor_pole(state_ptr);
Chris@0 100 se = sei >> 1; /* se = estimated signal */
Chris@0 101
Chris@0 102 d = sl - se; /* d = estimation diff. */
Chris@0 103
Chris@0 104 /* quantize prediction difference d */
Chris@0 105 y = step_size(state_ptr); /* quantizer step size */
Chris@0 106 i = quantize(d, y, qtab_723_16, 1); /* i = ADPCM code */
Chris@0 107
Chris@0 108 /* Since quantize() only produces a three level output
Chris@0 109 * (1, 2, or 3), we must create the fourth one on our own
Chris@0 110 */
Chris@0 111 if (i == 3) /* i code for the zero region */
Chris@0 112 if ((d & 0x8000) == 0) /* If d > 0, i=3 isn't right... */
Chris@0 113 i = 0;
Chris@0 114
Chris@0 115 dq = reconstruct(i & 2, _dqlntab[i], y); /* quantized diff. */
Chris@0 116
Chris@0 117 sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconstructed signal */
Chris@0 118
Chris@0 119 dqsez = sr + sez - se; /* pole prediction diff. */
Chris@0 120
Chris@0 121 update(2, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
Chris@0 122
Chris@0 123 return (i);
Chris@0 124 }
Chris@0 125
Chris@0 126 /*
Chris@0 127 * g723_16_decoder()
Chris@0 128 *
Chris@0 129 * Decodes a 2-bit CCITT G.723_16 ADPCM code and returns
Chris@0 130 * the resulting 16-bit linear PCM, A-law or u-law sample value.
Chris@0 131 * -1 is returned if the output coding is unknown.
Chris@0 132 */
Chris@0 133 int
Chris@0 134 g723_16_decoder(
Chris@0 135 int i,
Chris@0 136 G72x_STATE *state_ptr)
Chris@0 137 {
Chris@0 138 short sezi, sei, sez, se; /* ACCUM */
Chris@0 139 short y; /* MIX */
Chris@0 140 short sr; /* ADDB */
Chris@0 141 short dq;
Chris@0 142 short dqsez;
Chris@0 143
Chris@0 144 i &= 0x03; /* mask to get proper bits */
Chris@0 145 sezi = predictor_zero(state_ptr);
Chris@0 146 sez = sezi >> 1;
Chris@0 147 sei = sezi + predictor_pole(state_ptr);
Chris@0 148 se = sei >> 1; /* se = estimated signal */
Chris@0 149
Chris@0 150 y = step_size(state_ptr); /* adaptive quantizer step size */
Chris@0 151 dq = reconstruct(i & 0x02, _dqlntab[i], y); /* unquantize pred diff */
Chris@0 152
Chris@0 153 sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq); /* reconst. signal */
Chris@0 154
Chris@0 155 dqsez = sr - se + sez; /* pole prediction diff. */
Chris@0 156
Chris@0 157 update(2, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
Chris@0 158
Chris@0 159 /* sr was of 14-bit dynamic range */
Chris@0 160 return (sr << 2);
Chris@0 161 }
Chris@0 162