annotate src/libvorbis-1.3.3/doc/09-helper.tex @ 56:af97cad61ff0

Add updated build of PortAudio for OSX
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 03 Jan 2017 15:10:52 +0000
parents 05aa0afa9217
children
rev   line source
Chris@1 1 % -*- mode: latex; TeX-master: "Vorbis_I_spec"; -*-
Chris@1 2 %!TEX root = Vorbis_I_spec.tex
Chris@1 3 % $Id$
Chris@1 4 \section{Helper equations} \label{vorbis:spec:helper}
Chris@1 5
Chris@1 6 \subsection{Overview}
Chris@1 7
Chris@1 8 The equations below are used in multiple places by the Vorbis codec
Chris@1 9 specification. Rather than cluttering up the main specification
Chris@1 10 documents, they are defined here and referenced where appropriate.
Chris@1 11
Chris@1 12
Chris@1 13 \subsection{Functions}
Chris@1 14
Chris@1 15 \subsubsection{ilog} \label{vorbis:spec:ilog}
Chris@1 16
Chris@1 17 The "ilog(x)" function returns the position number (1 through n) of the highest set bit in the two's complement integer value
Chris@1 18 \varname{[x]}. Values of \varname{[x]} less than zero are defined to return zero.
Chris@1 19
Chris@1 20 \begin{programlisting}
Chris@1 21 1) [return\_value] = 0;
Chris@1 22 2) if ( [x] is greater than zero ) {
Chris@1 23
Chris@1 24 3) increment [return\_value];
Chris@1 25 4) logical shift [x] one bit to the right, padding the MSb with zero
Chris@1 26 5) repeat at step 2)
Chris@1 27
Chris@1 28 }
Chris@1 29
Chris@1 30 6) done
Chris@1 31 \end{programlisting}
Chris@1 32
Chris@1 33 Examples:
Chris@1 34
Chris@1 35 \begin{itemize}
Chris@1 36 \item ilog(0) = 0;
Chris@1 37 \item ilog(1) = 1;
Chris@1 38 \item ilog(2) = 2;
Chris@1 39 \item ilog(3) = 2;
Chris@1 40 \item ilog(4) = 3;
Chris@1 41 \item ilog(7) = 3;
Chris@1 42 \item ilog(negative number) = 0;
Chris@1 43 \end{itemize}
Chris@1 44
Chris@1 45
Chris@1 46
Chris@1 47
Chris@1 48 \subsubsection{float32\_unpack} \label{vorbis:spec:float32:unpack}
Chris@1 49
Chris@1 50 "float32\_unpack(x)" is intended to translate the packed binary
Chris@1 51 representation of a Vorbis codebook float value into the
Chris@1 52 representation used by the decoder for floating point numbers. For
Chris@1 53 purposes of this example, we will unpack a Vorbis float32 into a
Chris@1 54 host-native floating point number.
Chris@1 55
Chris@1 56 \begin{programlisting}
Chris@1 57 1) [mantissa] = [x] bitwise AND 0x1fffff (unsigned result)
Chris@1 58 2) [sign] = [x] bitwise AND 0x80000000 (unsigned result)
Chris@1 59 3) [exponent] = ( [x] bitwise AND 0x7fe00000) shifted right 21 bits (unsigned result)
Chris@1 60 4) if ( [sign] is nonzero ) then negate [mantissa]
Chris@1 61 5) return [mantissa] * ( 2 ^ ( [exponent] - 788 ) )
Chris@1 62 \end{programlisting}
Chris@1 63
Chris@1 64
Chris@1 65
Chris@1 66 \subsubsection{lookup1\_values} \label{vorbis:spec:lookup1:values}
Chris@1 67
Chris@1 68 "lookup1\_values(codebook\_entries,codebook\_dimensions)" is used to
Chris@1 69 compute the correct length of the value index for a codebook VQ lookup
Chris@1 70 table of lookup type 1. The values on this list are permuted to
Chris@1 71 construct the VQ vector lookup table of size
Chris@1 72 \varname{[codebook\_entries]}.
Chris@1 73
Chris@1 74 The return value for this function is defined to be 'the greatest
Chris@1 75 integer value for which \varname{[return\_value]} to the power of
Chris@1 76 \varname{[codebook\_dimensions]} is less than or equal to
Chris@1 77 \varname{[codebook\_entries]}'.
Chris@1 78
Chris@1 79
Chris@1 80
Chris@1 81 \subsubsection{low\_neighbor} \label{vorbis:spec:low:neighbor}
Chris@1 82
Chris@1 83 "low\_neighbor(v,x)" finds the position \varname{n} in vector \varname{[v]} of
Chris@1 84 the greatest value scalar element for which \varname{n} is less than
Chris@1 85 \varname{[x]} and vector \varname{[v]} element \varname{n} is less
Chris@1 86 than vector \varname{[v]} element \varname{[x]}.
Chris@1 87
Chris@1 88 \subsubsection{high\_neighbor} \label{vorbis:spec:high:neighbor}
Chris@1 89
Chris@1 90 "high\_neighbor(v,x)" finds the position \varname{n} in vector [v] of
Chris@1 91 the lowest value scalar element for which \varname{n} is less than
Chris@1 92 \varname{[x]} and vector \varname{[v]} element \varname{n} is greater
Chris@1 93 than vector \varname{[v]} element \varname{[x]}.
Chris@1 94
Chris@1 95
Chris@1 96
Chris@1 97 \subsubsection{render\_point} \label{vorbis:spec:render:point}
Chris@1 98
Chris@1 99 "render\_point(x0,y0,x1,y1,X)" is used to find the Y value at point X
Chris@1 100 along the line specified by x0, x1, y0 and y1. This function uses an
Chris@1 101 integer algorithm to solve for the point directly without calculating
Chris@1 102 intervening values along the line.
Chris@1 103
Chris@1 104 \begin{programlisting}
Chris@1 105 1) [dy] = [y1] - [y0]
Chris@1 106 2) [adx] = [x1] - [x0]
Chris@1 107 3) [ady] = absolute value of [dy]
Chris@1 108 4) [err] = [ady] * ([X] - [x0])
Chris@1 109 5) [off] = [err] / [adx] using integer division
Chris@1 110 6) if ( [dy] is less than zero ) {
Chris@1 111
Chris@1 112 7) [Y] = [y0] - [off]
Chris@1 113
Chris@1 114 } else {
Chris@1 115
Chris@1 116 8) [Y] = [y0] + [off]
Chris@1 117
Chris@1 118 }
Chris@1 119
Chris@1 120 9) done
Chris@1 121 \end{programlisting}
Chris@1 122
Chris@1 123
Chris@1 124
Chris@1 125 \subsubsection{render\_line} \label{vorbis:spec:render:line}
Chris@1 126
Chris@1 127 Floor decode type one uses the integer line drawing algorithm of
Chris@1 128 "render\_line(x0, y0, x1, y1, v)" to construct an integer floor
Chris@1 129 curve for contiguous piecewise line segments. Note that it has not
Chris@1 130 been relevant elsewhere, but here we must define integer division as
Chris@1 131 rounding division of both positive and negative numbers toward zero.
Chris@1 132
Chris@1 133
Chris@1 134 \begin{programlisting}
Chris@1 135 1) [dy] = [y1] - [y0]
Chris@1 136 2) [adx] = [x1] - [x0]
Chris@1 137 3) [ady] = absolute value of [dy]
Chris@1 138 4) [base] = [dy] / [adx] using integer division
Chris@1 139 5) [x] = [x0]
Chris@1 140 6) [y] = [y0]
Chris@1 141 7) [err] = 0
Chris@1 142
Chris@1 143 8) if ( [dy] is less than 0 ) {
Chris@1 144
Chris@1 145 9) [sy] = [base] - 1
Chris@1 146
Chris@1 147 } else {
Chris@1 148
Chris@1 149 10) [sy] = [base] + 1
Chris@1 150
Chris@1 151 }
Chris@1 152
Chris@1 153 11) [ady] = [ady] - (absolute value of [base]) * [adx]
Chris@1 154 12) vector [v] element [x] = [y]
Chris@1 155
Chris@1 156 13) iterate [x] over the range [x0]+1 ... [x1]-1 {
Chris@1 157
Chris@1 158 14) [err] = [err] + [ady];
Chris@1 159 15) if ( [err] >= [adx] ) {
Chris@1 160
Chris@1 161 16) [err] = [err] - [adx]
Chris@1 162 17) [y] = [y] + [sy]
Chris@1 163
Chris@1 164 } else {
Chris@1 165
Chris@1 166 18) [y] = [y] + [base]
Chris@1 167
Chris@1 168 }
Chris@1 169
Chris@1 170 19) vector [v] element [x] = [y]
Chris@1 171
Chris@1 172 }
Chris@1 173 \end{programlisting}
Chris@1 174
Chris@1 175
Chris@1 176
Chris@1 177
Chris@1 178
Chris@1 179
Chris@1 180
Chris@1 181