annotate src/fftw-3.3.5/reodft/reodft00e-splitradix.c @ 56:af97cad61ff0

Add updated build of PortAudio for OSX
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 03 Jan 2017 15:10:52 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2005 Matteo Frigo
Chris@42 3 * Copyright (c) 2005 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21
Chris@42 22 /* Do an R{E,O}DFT00 problem (of an odd length n) recursively via an
Chris@42 23 R{E,O}DFT00 problem and an RDFT problem of half the length.
Chris@42 24
Chris@42 25 This works by "logically" expanding the array to a real-even/odd DFT of
Chris@42 26 length 2n-/+2 and then applying the split-radix algorithm.
Chris@42 27
Chris@42 28 In this way, we can avoid having to pad to twice the length
Chris@42 29 (ala redft00-r2hc-pad), saving a factor of ~2 for n=2^m+/-1,
Chris@42 30 but don't incur the accuracy loss that the "ordinary" algorithm
Chris@42 31 sacrifices (ala redft00-r2hc.c).
Chris@42 32 */
Chris@42 33
Chris@42 34 #include "reodft.h"
Chris@42 35
Chris@42 36 typedef struct {
Chris@42 37 solver super;
Chris@42 38 } S;
Chris@42 39
Chris@42 40 typedef struct {
Chris@42 41 plan_rdft super;
Chris@42 42 plan *clde, *cldo;
Chris@42 43 twid *td;
Chris@42 44 INT is, os;
Chris@42 45 INT n;
Chris@42 46 INT vl;
Chris@42 47 INT ivs, ovs;
Chris@42 48 } P;
Chris@42 49
Chris@42 50 /* redft00 */
Chris@42 51 static void apply_e(const plan *ego_, R *I, R *O)
Chris@42 52 {
Chris@42 53 const P *ego = (const P *) ego_;
Chris@42 54 INT is = ego->is, os = ego->os;
Chris@42 55 INT i, j, n = ego->n + 1, n2 = (n-1)/2;
Chris@42 56 INT iv, vl = ego->vl;
Chris@42 57 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@42 58 R *W = ego->td->W - 2;
Chris@42 59 R *buf;
Chris@42 60
Chris@42 61 buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS);
Chris@42 62
Chris@42 63 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@42 64 /* do size (n-1)/2 r2hc transform of odd-indexed elements
Chris@42 65 with stride 4, "wrapping around" end of array with even
Chris@42 66 boundary conditions */
Chris@42 67 for (j = 0, i = 1; i < n; i += 4)
Chris@42 68 buf[j++] = I[is * i];
Chris@42 69 for (i = 2*n-2-i; i > 0; i -= 4)
Chris@42 70 buf[j++] = I[is * i];
Chris@42 71 {
Chris@42 72 plan_rdft *cld = (plan_rdft *) ego->cldo;
Chris@42 73 cld->apply((plan *) cld, buf, buf);
Chris@42 74 }
Chris@42 75
Chris@42 76 /* do size (n+1)/2 redft00 of the even-indexed elements,
Chris@42 77 writing to O: */
Chris@42 78 {
Chris@42 79 plan_rdft *cld = (plan_rdft *) ego->clde;
Chris@42 80 cld->apply((plan *) cld, I, O);
Chris@42 81 }
Chris@42 82
Chris@42 83 /* combine the results with the twiddle factors to get output */
Chris@42 84 { /* DC element */
Chris@42 85 E b20 = O[0], b0 = K(2.0) * buf[0];
Chris@42 86 O[0] = b20 + b0;
Chris@42 87 O[2*(n2*os)] = b20 - b0;
Chris@42 88 /* O[n2*os] = O[n2*os]; */
Chris@42 89 }
Chris@42 90 for (i = 1; i < n2 - i; ++i) {
Chris@42 91 E ap, am, br, bi, wr, wi, wbr, wbi;
Chris@42 92 br = buf[i];
Chris@42 93 bi = buf[n2 - i];
Chris@42 94 wr = W[2*i];
Chris@42 95 wi = W[2*i+1];
Chris@42 96 #if FFT_SIGN == -1
Chris@42 97 wbr = K(2.0) * (wr*br + wi*bi);
Chris@42 98 wbi = K(2.0) * (wr*bi - wi*br);
Chris@42 99 #else
Chris@42 100 wbr = K(2.0) * (wr*br - wi*bi);
Chris@42 101 wbi = K(2.0) * (wr*bi + wi*br);
Chris@42 102 #endif
Chris@42 103 ap = O[i*os];
Chris@42 104 O[i*os] = ap + wbr;
Chris@42 105 O[(2*n2 - i)*os] = ap - wbr;
Chris@42 106 am = O[(n2 - i)*os];
Chris@42 107 #if FFT_SIGN == -1
Chris@42 108 O[(n2 - i)*os] = am - wbi;
Chris@42 109 O[(n2 + i)*os] = am + wbi;
Chris@42 110 #else
Chris@42 111 O[(n2 - i)*os] = am + wbi;
Chris@42 112 O[(n2 + i)*os] = am - wbi;
Chris@42 113 #endif
Chris@42 114 }
Chris@42 115 if (i == n2 - i) { /* Nyquist element */
Chris@42 116 E ap, wbr;
Chris@42 117 wbr = K(2.0) * (W[2*i] * buf[i]);
Chris@42 118 ap = O[i*os];
Chris@42 119 O[i*os] = ap + wbr;
Chris@42 120 O[(2*n2 - i)*os] = ap - wbr;
Chris@42 121 }
Chris@42 122 }
Chris@42 123
Chris@42 124 X(ifree)(buf);
Chris@42 125 }
Chris@42 126
Chris@42 127 /* rodft00 */
Chris@42 128 static void apply_o(const plan *ego_, R *I, R *O)
Chris@42 129 {
Chris@42 130 const P *ego = (const P *) ego_;
Chris@42 131 INT is = ego->is, os = ego->os;
Chris@42 132 INT i, j, n = ego->n - 1, n2 = (n+1)/2;
Chris@42 133 INT iv, vl = ego->vl;
Chris@42 134 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@42 135 R *W = ego->td->W - 2;
Chris@42 136 R *buf;
Chris@42 137
Chris@42 138 buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS);
Chris@42 139
Chris@42 140 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@42 141 /* do size (n+1)/2 r2hc transform of even-indexed elements
Chris@42 142 with stride 4, "wrapping around" end of array with odd
Chris@42 143 boundary conditions */
Chris@42 144 for (j = 0, i = 0; i < n; i += 4)
Chris@42 145 buf[j++] = I[is * i];
Chris@42 146 for (i = 2*n-i; i > 0; i -= 4)
Chris@42 147 buf[j++] = -I[is * i];
Chris@42 148 {
Chris@42 149 plan_rdft *cld = (plan_rdft *) ego->cldo;
Chris@42 150 cld->apply((plan *) cld, buf, buf);
Chris@42 151 }
Chris@42 152
Chris@42 153 /* do size (n-1)/2 rodft00 of the odd-indexed elements,
Chris@42 154 writing to O: */
Chris@42 155 {
Chris@42 156 plan_rdft *cld = (plan_rdft *) ego->clde;
Chris@42 157 if (I == O) {
Chris@42 158 /* can't use I+is and I, subplan would lose in-placeness */
Chris@42 159 cld->apply((plan *) cld, I + is, I + is);
Chris@42 160 /* we could maybe avoid this copy by modifying the
Chris@42 161 twiddle loop, but currently I can't be bothered. */
Chris@42 162 A(is >= os);
Chris@42 163 for (i = 0; i < n2-1; ++i)
Chris@42 164 O[os*i] = I[is*(i+1)];
Chris@42 165 }
Chris@42 166 else
Chris@42 167 cld->apply((plan *) cld, I + is, O);
Chris@42 168 }
Chris@42 169
Chris@42 170 /* combine the results with the twiddle factors to get output */
Chris@42 171 O[(n2-1)*os] = K(2.0) * buf[0];
Chris@42 172 for (i = 1; i < n2 - i; ++i) {
Chris@42 173 E ap, am, br, bi, wr, wi, wbr, wbi;
Chris@42 174 br = buf[i];
Chris@42 175 bi = buf[n2 - i];
Chris@42 176 wr = W[2*i];
Chris@42 177 wi = W[2*i+1];
Chris@42 178 #if FFT_SIGN == -1
Chris@42 179 wbr = K(2.0) * (wr*br + wi*bi);
Chris@42 180 wbi = K(2.0) * (wi*br - wr*bi);
Chris@42 181 #else
Chris@42 182 wbr = K(2.0) * (wr*br - wi*bi);
Chris@42 183 wbi = K(2.0) * (wr*bi + wi*br);
Chris@42 184 #endif
Chris@42 185 ap = O[(i-1)*os];
Chris@42 186 O[(i-1)*os] = wbi + ap;
Chris@42 187 O[(2*n2-1 - i)*os] = wbi - ap;
Chris@42 188 am = O[(n2-1 - i)*os];
Chris@42 189 #if FFT_SIGN == -1
Chris@42 190 O[(n2-1 - i)*os] = wbr + am;
Chris@42 191 O[(n2-1 + i)*os] = wbr - am;
Chris@42 192 #else
Chris@42 193 O[(n2-1 - i)*os] = wbr + am;
Chris@42 194 O[(n2-1 + i)*os] = wbr - am;
Chris@42 195 #endif
Chris@42 196 }
Chris@42 197 if (i == n2 - i) { /* Nyquist element */
Chris@42 198 E ap, wbi;
Chris@42 199 wbi = K(2.0) * (W[2*i+1] * buf[i]);
Chris@42 200 ap = O[(i-1)*os];
Chris@42 201 O[(i-1)*os] = wbi + ap;
Chris@42 202 O[(2*n2-1 - i)*os] = wbi - ap;
Chris@42 203 }
Chris@42 204 }
Chris@42 205
Chris@42 206 X(ifree)(buf);
Chris@42 207 }
Chris@42 208
Chris@42 209 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@42 210 {
Chris@42 211 P *ego = (P *) ego_;
Chris@42 212 static const tw_instr reodft00e_tw[] = {
Chris@42 213 { TW_COS, 1, 1 },
Chris@42 214 { TW_SIN, 1, 1 },
Chris@42 215 { TW_NEXT, 1, 0 }
Chris@42 216 };
Chris@42 217
Chris@42 218 X(plan_awake)(ego->clde, wakefulness);
Chris@42 219 X(plan_awake)(ego->cldo, wakefulness);
Chris@42 220 X(twiddle_awake)(wakefulness, &ego->td, reodft00e_tw,
Chris@42 221 2*ego->n, 1, ego->n/4);
Chris@42 222 }
Chris@42 223
Chris@42 224 static void destroy(plan *ego_)
Chris@42 225 {
Chris@42 226 P *ego = (P *) ego_;
Chris@42 227 X(plan_destroy_internal)(ego->cldo);
Chris@42 228 X(plan_destroy_internal)(ego->clde);
Chris@42 229 }
Chris@42 230
Chris@42 231 static void print(const plan *ego_, printer *p)
Chris@42 232 {
Chris@42 233 const P *ego = (const P *) ego_;
Chris@42 234 if (ego->super.apply == apply_e)
Chris@42 235 p->print(p, "(redft00e-splitradix-%D%v%(%p%)%(%p%))",
Chris@42 236 ego->n + 1, ego->vl, ego->clde, ego->cldo);
Chris@42 237 else
Chris@42 238 p->print(p, "(rodft00e-splitradix-%D%v%(%p%)%(%p%))",
Chris@42 239 ego->n - 1, ego->vl, ego->clde, ego->cldo);
Chris@42 240 }
Chris@42 241
Chris@42 242 static int applicable0(const solver *ego_, const problem *p_)
Chris@42 243 {
Chris@42 244 const problem_rdft *p = (const problem_rdft *) p_;
Chris@42 245 UNUSED(ego_);
Chris@42 246
Chris@42 247 return (1
Chris@42 248 && p->sz->rnk == 1
Chris@42 249 && p->vecsz->rnk <= 1
Chris@42 250 && (p->kind[0] == REDFT00 || p->kind[0] == RODFT00)
Chris@42 251 && p->sz->dims[0].n > 1 /* don't create size-0 sub-plans */
Chris@42 252 && p->sz->dims[0].n % 2 /* odd: 4 divides "logical" DFT */
Chris@42 253 && (p->I != p->O || p->vecsz->rnk == 0
Chris@42 254 || p->vecsz->dims[0].is == p->vecsz->dims[0].os)
Chris@42 255 && (p->kind[0] != RODFT00 || p->I != p->O ||
Chris@42 256 p->sz->dims[0].is >= p->sz->dims[0].os) /* laziness */
Chris@42 257 );
Chris@42 258 }
Chris@42 259
Chris@42 260 static int applicable(const solver *ego, const problem *p, const planner *plnr)
Chris@42 261 {
Chris@42 262 return (!NO_SLOWP(plnr) && applicable0(ego, p));
Chris@42 263 }
Chris@42 264
Chris@42 265 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@42 266 {
Chris@42 267 P *pln;
Chris@42 268 const problem_rdft *p;
Chris@42 269 plan *clde, *cldo;
Chris@42 270 R *buf;
Chris@42 271 INT n, n0;
Chris@42 272 opcnt ops;
Chris@42 273 int inplace_odd;
Chris@42 274
Chris@42 275 static const plan_adt padt = {
Chris@42 276 X(rdft_solve), awake, print, destroy
Chris@42 277 };
Chris@42 278
Chris@42 279 if (!applicable(ego_, p_, plnr))
Chris@42 280 return (plan *)0;
Chris@42 281
Chris@42 282 p = (const problem_rdft *) p_;
Chris@42 283
Chris@42 284 n = (n0 = p->sz->dims[0].n) + (p->kind[0] == REDFT00 ? (INT)-1 : (INT)1);
Chris@42 285 A(n > 0 && n % 2 == 0);
Chris@42 286 buf = (R *) MALLOC(sizeof(R) * (n/2), BUFFERS);
Chris@42 287
Chris@42 288 inplace_odd = p->kind[0]==RODFT00 && p->I == p->O;
Chris@42 289 clde = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(
Chris@42 290 X(mktensor_1d)(n0-n/2, 2*p->sz->dims[0].is,
Chris@42 291 inplace_odd ? p->sz->dims[0].is
Chris@42 292 : p->sz->dims[0].os),
Chris@42 293 X(mktensor_0d)(),
Chris@42 294 TAINT(p->I
Chris@42 295 + p->sz->dims[0].is * (p->kind[0]==RODFT00),
Chris@42 296 p->vecsz->rnk ? p->vecsz->dims[0].is : 0),
Chris@42 297 TAINT(p->O
Chris@42 298 + p->sz->dims[0].is * inplace_odd,
Chris@42 299 p->vecsz->rnk ? p->vecsz->dims[0].os : 0),
Chris@42 300 p->kind[0]));
Chris@42 301 if (!clde) {
Chris@42 302 X(ifree)(buf);
Chris@42 303 return (plan *)0;
Chris@42 304 }
Chris@42 305
Chris@42 306 cldo = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(
Chris@42 307 X(mktensor_1d)(n/2, 1, 1),
Chris@42 308 X(mktensor_0d)(),
Chris@42 309 buf, buf, R2HC));
Chris@42 310 X(ifree)(buf);
Chris@42 311 if (!cldo)
Chris@42 312 return (plan *)0;
Chris@42 313
Chris@42 314 pln = MKPLAN_RDFT(P, &padt, p->kind[0] == REDFT00 ? apply_e : apply_o);
Chris@42 315
Chris@42 316 pln->n = n;
Chris@42 317 pln->is = p->sz->dims[0].is;
Chris@42 318 pln->os = p->sz->dims[0].os;
Chris@42 319 pln->clde = clde;
Chris@42 320 pln->cldo = cldo;
Chris@42 321 pln->td = 0;
Chris@42 322
Chris@42 323 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
Chris@42 324
Chris@42 325 X(ops_zero)(&ops);
Chris@42 326 ops.other = n/2;
Chris@42 327 ops.add = (p->kind[0]==REDFT00 ? (INT)2 : (INT)0) +
Chris@42 328 (n/2-1)/2 * 6 + ((n/2)%2==0) * 2;
Chris@42 329 ops.mul = 1 + (n/2-1)/2 * 6 + ((n/2)%2==0) * 2;
Chris@42 330
Chris@42 331 /* tweak ops.other so that r2hc-pad is used for small sizes, which
Chris@42 332 seems to be a lot faster on my machine: */
Chris@42 333 ops.other += 256;
Chris@42 334
Chris@42 335 X(ops_zero)(&pln->super.super.ops);
Chris@42 336 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
Chris@42 337 X(ops_madd2)(pln->vl, &clde->ops, &pln->super.super.ops);
Chris@42 338 X(ops_madd2)(pln->vl, &cldo->ops, &pln->super.super.ops);
Chris@42 339
Chris@42 340 return &(pln->super.super);
Chris@42 341 }
Chris@42 342
Chris@42 343 /* constructor */
Chris@42 344 static solver *mksolver(void)
Chris@42 345 {
Chris@42 346 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@42 347 S *slv = MKSOLVER(S, &sadt);
Chris@42 348 return &(slv->super);
Chris@42 349 }
Chris@42 350
Chris@42 351 void X(reodft00e_splitradix_register)(planner *p)
Chris@42 352 {
Chris@42 353 REGISTER_SOLVER(p, mksolver());
Chris@42 354 }