Chris@42
|
1 /*
|
Chris@42
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
Chris@42
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
Chris@42
|
4 *
|
Chris@42
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@42
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@42
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@42
|
8 * (at your option) any later version.
|
Chris@42
|
9 *
|
Chris@42
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@42
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@42
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@42
|
13 * GNU General Public License for more details.
|
Chris@42
|
14 *
|
Chris@42
|
15 * You should have received a copy of the GNU General Public License
|
Chris@42
|
16 * along with this program; if not, write to the Free Software
|
Chris@42
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@42
|
18 *
|
Chris@42
|
19 */
|
Chris@42
|
20
|
Chris@42
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@42
|
22 /* Generated on Sat Jul 30 16:52:44 EDT 2016 */
|
Chris@42
|
23
|
Chris@42
|
24 #include "codelet-rdft.h"
|
Chris@42
|
25
|
Chris@42
|
26 #ifdef HAVE_FMA
|
Chris@42
|
27
|
Chris@42
|
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dif -sign 1 -name hc2cbdftv_16 -include hc2cbv.h */
|
Chris@42
|
29
|
Chris@42
|
30 /*
|
Chris@42
|
31 * This function contains 103 FP additions, 80 FP multiplications,
|
Chris@42
|
32 * (or, 53 additions, 30 multiplications, 50 fused multiply/add),
|
Chris@42
|
33 * 123 stack variables, 3 constants, and 32 memory accesses
|
Chris@42
|
34 */
|
Chris@42
|
35 #include "hc2cbv.h"
|
Chris@42
|
36
|
Chris@42
|
37 static void hc2cbdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@42
|
38 {
|
Chris@42
|
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
Chris@42
|
40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
|
Chris@42
|
41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@42
|
42 {
|
Chris@42
|
43 INT m;
|
Chris@42
|
44 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) {
|
Chris@42
|
45 V T1D, T1F, TV, TW, T17, T18, T1B, T1A, T1H, T1G;
|
Chris@42
|
46 {
|
Chris@42
|
47 V T8, Tv, Tb, TF, Tl, TJ, TP, T1w, TE, T1t, T10, T1p, TG, Te, Tg;
|
Chris@42
|
48 V Th, T2, T3, Ts, Tt, T5, T6, Tp, Tq, T9, TA, T4, TC, Tu, TN;
|
Chris@42
|
49 V T7, TB, Tr, Ta, Tj, Tk, Tc, Td, TY, TD, TO, TZ, T1Q, T19, T1I;
|
Chris@42
|
50 V T1d, Tf, T11, TH, TQ, Ti, TI, T1k, T1K, T1S, T1r, T14, T16, TU, Ty;
|
Chris@42
|
51 V T1z, TX, T1o, T1, TK, TR, Tm, T12, T1C, Tz, T15;
|
Chris@42
|
52 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@42
|
53 T3 = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
54 Ts = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0]));
|
Chris@42
|
55 Tt = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
56 T5 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
Chris@42
|
57 T6 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
58 Tp = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@42
|
59 Tq = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
60 T9 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
61 TA = VFNMSCONJ(T3, T2);
|
Chris@42
|
62 T4 = VFMACONJ(T3, T2);
|
Chris@42
|
63 TC = VFMSCONJ(Tt, Ts);
|
Chris@42
|
64 Tu = VFMACONJ(Tt, Ts);
|
Chris@42
|
65 TN = VFNMSCONJ(T6, T5);
|
Chris@42
|
66 T7 = VFMACONJ(T6, T5);
|
Chris@42
|
67 TB = VFNMSCONJ(Tq, Tp);
|
Chris@42
|
68 Tr = VFMACONJ(Tq, Tp);
|
Chris@42
|
69 Ta = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0]));
|
Chris@42
|
70 Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
71 Tk = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
Chris@42
|
72 Tc = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
73 Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@42
|
74 T8 = VSUB(T4, T7);
|
Chris@42
|
75 TY = VADD(T4, T7);
|
Chris@42
|
76 TD = VADD(TB, TC);
|
Chris@42
|
77 TO = VSUB(TB, TC);
|
Chris@42
|
78 Tv = VSUB(Tr, Tu);
|
Chris@42
|
79 TZ = VADD(Tr, Tu);
|
Chris@42
|
80 Tb = VFMACONJ(Ta, T9);
|
Chris@42
|
81 TF = VFNMSCONJ(Ta, T9);
|
Chris@42
|
82 Tl = VFMACONJ(Tk, Tj);
|
Chris@42
|
83 TJ = VFNMSCONJ(Tk, Tj);
|
Chris@42
|
84 TP = VFMA(LDK(KP707106781), TO, TN);
|
Chris@42
|
85 T1w = VFNMS(LDK(KP707106781), TO, TN);
|
Chris@42
|
86 TE = VFMA(LDK(KP707106781), TD, TA);
|
Chris@42
|
87 T1t = VFNMS(LDK(KP707106781), TD, TA);
|
Chris@42
|
88 T10 = VADD(TY, TZ);
|
Chris@42
|
89 T1p = VSUB(TY, TZ);
|
Chris@42
|
90 TG = VFNMSCONJ(Td, Tc);
|
Chris@42
|
91 Te = VFMACONJ(Td, Tc);
|
Chris@42
|
92 Tg = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
93 Th = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@42
|
94 T1Q = LDW(&(W[TWVL * 22]));
|
Chris@42
|
95 T19 = LDW(&(W[TWVL * 26]));
|
Chris@42
|
96 T1I = LDW(&(W[TWVL * 2]));
|
Chris@42
|
97 T1d = LDW(&(W[TWVL * 28]));
|
Chris@42
|
98 Tf = VSUB(Tb, Te);
|
Chris@42
|
99 T11 = VADD(Tb, Te);
|
Chris@42
|
100 TH = VFNMS(LDK(KP414213562), TG, TF);
|
Chris@42
|
101 TQ = VFMA(LDK(KP414213562), TF, TG);
|
Chris@42
|
102 Ti = VFMACONJ(Th, Tg);
|
Chris@42
|
103 TI = VFMSCONJ(Th, Tg);
|
Chris@42
|
104 T1k = LDW(&(W[0]));
|
Chris@42
|
105 T1K = LDW(&(W[TWVL * 4]));
|
Chris@42
|
106 T1S = LDW(&(W[TWVL * 24]));
|
Chris@42
|
107 TX = LDW(&(W[TWVL * 14]));
|
Chris@42
|
108 T1o = LDW(&(W[TWVL * 6]));
|
Chris@42
|
109 T1 = LDW(&(W[TWVL * 10]));
|
Chris@42
|
110 TK = VFMA(LDK(KP414213562), TJ, TI);
|
Chris@42
|
111 TR = VFNMS(LDK(KP414213562), TI, TJ);
|
Chris@42
|
112 Tm = VSUB(Ti, Tl);
|
Chris@42
|
113 T12 = VADD(Ti, Tl);
|
Chris@42
|
114 T1C = LDW(&(W[TWVL * 18]));
|
Chris@42
|
115 Tz = LDW(&(W[TWVL * 12]));
|
Chris@42
|
116 T15 = LDW(&(W[TWVL * 16]));
|
Chris@42
|
117 {
|
Chris@42
|
118 V T1v, T1y, T1N, T1g, T1J, T1c, T1U, T1V, T1m, T1n, T1s, TS, T1u, TL, T1x;
|
Chris@42
|
119 V T13, T1q, Tn, Tw, T1L, T1f, TT, T1M, T1e, TM, T1R, T1j, T1b, Tx, T1a;
|
Chris@42
|
120 V To, T1T, T1l, T1E, T1O, T1P, T1h, T1i;
|
Chris@42
|
121 T1s = LDW(&(W[TWVL * 8]));
|
Chris@42
|
122 TS = VADD(TQ, TR);
|
Chris@42
|
123 T1u = VSUB(TQ, TR);
|
Chris@42
|
124 TL = VADD(TH, TK);
|
Chris@42
|
125 T1x = VSUB(TH, TK);
|
Chris@42
|
126 T13 = VADD(T11, T12);
|
Chris@42
|
127 T1q = VSUB(T11, T12);
|
Chris@42
|
128 Tn = VADD(Tf, Tm);
|
Chris@42
|
129 Tw = VSUB(Tf, Tm);
|
Chris@42
|
130 T1L = VFMA(LDK(KP923879532), T1u, T1t);
|
Chris@42
|
131 T1v = VFNMS(LDK(KP923879532), T1u, T1t);
|
Chris@42
|
132 T1f = VFMA(LDK(KP923879532), TS, TP);
|
Chris@42
|
133 TT = VFNMS(LDK(KP923879532), TS, TP);
|
Chris@42
|
134 T1M = VFNMS(LDK(KP923879532), T1x, T1w);
|
Chris@42
|
135 T1y = VFMA(LDK(KP923879532), T1x, T1w);
|
Chris@42
|
136 T1e = VFMA(LDK(KP923879532), TL, TE);
|
Chris@42
|
137 TM = VFNMS(LDK(KP923879532), TL, TE);
|
Chris@42
|
138 T1r = VZMUL(T1o, VFMAI(T1q, T1p));
|
Chris@42
|
139 T1R = VZMUL(T1Q, VFNMSI(T1q, T1p));
|
Chris@42
|
140 T14 = VZMUL(TX, VSUB(T10, T13));
|
Chris@42
|
141 T1j = VADD(T10, T13);
|
Chris@42
|
142 T1b = VFMA(LDK(KP707106781), Tw, Tv);
|
Chris@42
|
143 Tx = VFNMS(LDK(KP707106781), Tw, Tv);
|
Chris@42
|
144 T1a = VFMA(LDK(KP707106781), Tn, T8);
|
Chris@42
|
145 To = VFNMS(LDK(KP707106781), Tn, T8);
|
Chris@42
|
146 T1T = VZMULI(T1S, VFMAI(T1M, T1L));
|
Chris@42
|
147 T1N = VZMULI(T1K, VFNMSI(T1M, T1L));
|
Chris@42
|
148 T16 = VZMULI(T15, VFMAI(TT, TM));
|
Chris@42
|
149 TU = VZMULI(Tz, VFNMSI(TT, TM));
|
Chris@42
|
150 T1l = VZMULI(T1k, VFMAI(T1f, T1e));
|
Chris@42
|
151 T1g = VZMULI(T1d, VFNMSI(T1f, T1e));
|
Chris@42
|
152 T1D = VZMUL(T1C, VFMAI(Tx, To));
|
Chris@42
|
153 Ty = VZMUL(T1, VFNMSI(Tx, To));
|
Chris@42
|
154 T1J = VZMUL(T1I, VFMAI(T1b, T1a));
|
Chris@42
|
155 T1c = VZMUL(T19, VFNMSI(T1b, T1a));
|
Chris@42
|
156 T1U = VCONJ(VSUB(T1R, T1T));
|
Chris@42
|
157 T1V = VADD(T1R, T1T);
|
Chris@42
|
158 T1m = VCONJ(VSUB(T1j, T1l));
|
Chris@42
|
159 T1n = VADD(T1j, T1l);
|
Chris@42
|
160 T1z = VZMULI(T1s, VFMAI(T1y, T1v));
|
Chris@42
|
161 T1E = LDW(&(W[TWVL * 20]));
|
Chris@42
|
162 T1O = VCONJ(VSUB(T1J, T1N));
|
Chris@42
|
163 T1P = VADD(T1J, T1N);
|
Chris@42
|
164 T1h = VCONJ(VSUB(T1c, T1g));
|
Chris@42
|
165 T1i = VADD(T1c, T1g);
|
Chris@42
|
166 ST(&(Rp[WS(rs, 6)]), T1V, ms, &(Rp[0]));
|
Chris@42
|
167 ST(&(Rm[WS(rs, 6)]), T1U, -ms, &(Rm[0]));
|
Chris@42
|
168 ST(&(Rp[0]), T1n, ms, &(Rp[0]));
|
Chris@42
|
169 ST(&(Rm[0]), T1m, -ms, &(Rm[0]));
|
Chris@42
|
170 ST(&(Rp[WS(rs, 1)]), T1P, ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
171 ST(&(Rm[WS(rs, 1)]), T1O, -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
172 ST(&(Rp[WS(rs, 7)]), T1i, ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
173 ST(&(Rm[WS(rs, 7)]), T1h, -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
174 T1F = VZMULI(T1E, VFNMSI(T1y, T1v));
|
Chris@42
|
175 }
|
Chris@42
|
176 TV = VCONJ(VSUB(Ty, TU));
|
Chris@42
|
177 TW = VADD(Ty, TU);
|
Chris@42
|
178 T17 = VCONJ(VSUB(T14, T16));
|
Chris@42
|
179 T18 = VADD(T14, T16);
|
Chris@42
|
180 T1B = VADD(T1r, T1z);
|
Chris@42
|
181 T1A = VCONJ(VSUB(T1r, T1z));
|
Chris@42
|
182 }
|
Chris@42
|
183 T1H = VADD(T1D, T1F);
|
Chris@42
|
184 T1G = VCONJ(VSUB(T1D, T1F));
|
Chris@42
|
185 ST(&(Rm[WS(rs, 3)]), TV, -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
186 ST(&(Rp[WS(rs, 3)]), TW, ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
187 ST(&(Rm[WS(rs, 4)]), T17, -ms, &(Rm[0]));
|
Chris@42
|
188 ST(&(Rm[WS(rs, 2)]), T1A, -ms, &(Rm[0]));
|
Chris@42
|
189 ST(&(Rp[WS(rs, 2)]), T1B, ms, &(Rp[0]));
|
Chris@42
|
190 ST(&(Rp[WS(rs, 4)]), T18, ms, &(Rp[0]));
|
Chris@42
|
191 ST(&(Rp[WS(rs, 5)]), T1H, ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
192 ST(&(Rm[WS(rs, 5)]), T1G, -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
193 }
|
Chris@42
|
194 }
|
Chris@42
|
195 VLEAVE();
|
Chris@42
|
196 }
|
Chris@42
|
197
|
Chris@42
|
198 static const tw_instr twinstr[] = {
|
Chris@42
|
199 VTW(1, 1),
|
Chris@42
|
200 VTW(1, 2),
|
Chris@42
|
201 VTW(1, 3),
|
Chris@42
|
202 VTW(1, 4),
|
Chris@42
|
203 VTW(1, 5),
|
Chris@42
|
204 VTW(1, 6),
|
Chris@42
|
205 VTW(1, 7),
|
Chris@42
|
206 VTW(1, 8),
|
Chris@42
|
207 VTW(1, 9),
|
Chris@42
|
208 VTW(1, 10),
|
Chris@42
|
209 VTW(1, 11),
|
Chris@42
|
210 VTW(1, 12),
|
Chris@42
|
211 VTW(1, 13),
|
Chris@42
|
212 VTW(1, 14),
|
Chris@42
|
213 VTW(1, 15),
|
Chris@42
|
214 {TW_NEXT, VL, 0}
|
Chris@42
|
215 };
|
Chris@42
|
216
|
Chris@42
|
217 static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cbdftv_16"), twinstr, &GENUS, {53, 30, 50, 0} };
|
Chris@42
|
218
|
Chris@42
|
219 void XSIMD(codelet_hc2cbdftv_16) (planner *p) {
|
Chris@42
|
220 X(khc2c_register) (p, hc2cbdftv_16, &desc, HC2C_VIA_DFT);
|
Chris@42
|
221 }
|
Chris@42
|
222 #else /* HAVE_FMA */
|
Chris@42
|
223
|
Chris@42
|
224 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dif -sign 1 -name hc2cbdftv_16 -include hc2cbv.h */
|
Chris@42
|
225
|
Chris@42
|
226 /*
|
Chris@42
|
227 * This function contains 103 FP additions, 42 FP multiplications,
|
Chris@42
|
228 * (or, 99 additions, 38 multiplications, 4 fused multiply/add),
|
Chris@42
|
229 * 83 stack variables, 3 constants, and 32 memory accesses
|
Chris@42
|
230 */
|
Chris@42
|
231 #include "hc2cbv.h"
|
Chris@42
|
232
|
Chris@42
|
233 static void hc2cbdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@42
|
234 {
|
Chris@42
|
235 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
|
Chris@42
|
236 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
Chris@42
|
237 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@42
|
238 {
|
Chris@42
|
239 INT m;
|
Chris@42
|
240 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) {
|
Chris@42
|
241 V Tf, T16, TZ, T1C, TI, T1a, TV, T1D, T1F, T1G, Ty, T19, TC, T17, TS;
|
Chris@42
|
242 V T10;
|
Chris@42
|
243 {
|
Chris@42
|
244 V T2, TD, T4, TF, Tc, Tb, Td, T6, T8, T9, T3, TE, Ta, T7, T5;
|
Chris@42
|
245 V Te, TX, TY, TG, TH, TT, TU, Tj, TM, Tw, TQ, Tn, TN, Ts, TP;
|
Chris@42
|
246 V Tg, Ti, Th, Tt, Tv, Tu, Tk, Tm, Tl, Tr, Tq, Tp, To, Tx, TA;
|
Chris@42
|
247 V TB, TO, TR;
|
Chris@42
|
248 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@42
|
249 TD = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
|
Chris@42
|
250 T3 = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
251 T4 = VCONJ(T3);
|
Chris@42
|
252 TE = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
253 TF = VCONJ(TE);
|
Chris@42
|
254 Tc = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0]));
|
Chris@42
|
255 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
256 Tb = VCONJ(Ta);
|
Chris@42
|
257 Td = VSUB(Tb, Tc);
|
Chris@42
|
258 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@42
|
259 T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
260 T8 = VCONJ(T7);
|
Chris@42
|
261 T9 = VSUB(T6, T8);
|
Chris@42
|
262 T5 = VSUB(T2, T4);
|
Chris@42
|
263 Te = VMUL(LDK(KP707106781), VADD(T9, Td));
|
Chris@42
|
264 Tf = VADD(T5, Te);
|
Chris@42
|
265 T16 = VSUB(T5, Te);
|
Chris@42
|
266 TX = VADD(T2, T4);
|
Chris@42
|
267 TY = VADD(TD, TF);
|
Chris@42
|
268 TZ = VSUB(TX, TY);
|
Chris@42
|
269 T1C = VADD(TX, TY);
|
Chris@42
|
270 TG = VSUB(TD, TF);
|
Chris@42
|
271 TH = VMUL(LDK(KP707106781), VSUB(T9, Td));
|
Chris@42
|
272 TI = VADD(TG, TH);
|
Chris@42
|
273 T1a = VSUB(TH, TG);
|
Chris@42
|
274 TT = VADD(T6, T8);
|
Chris@42
|
275 TU = VADD(Tb, Tc);
|
Chris@42
|
276 TV = VSUB(TT, TU);
|
Chris@42
|
277 T1D = VADD(TT, TU);
|
Chris@42
|
278 Tg = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
279 Th = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0]));
|
Chris@42
|
280 Ti = VCONJ(Th);
|
Chris@42
|
281 Tj = VSUB(Tg, Ti);
|
Chris@42
|
282 TM = VADD(Tg, Ti);
|
Chris@42
|
283 Tt = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
284 Tu = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
|
Chris@42
|
285 Tv = VCONJ(Tu);
|
Chris@42
|
286 Tw = VSUB(Tt, Tv);
|
Chris@42
|
287 TQ = VADD(Tt, Tv);
|
Chris@42
|
288 Tk = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
289 Tl = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@42
|
290 Tm = VCONJ(Tl);
|
Chris@42
|
291 Tn = VSUB(Tk, Tm);
|
Chris@42
|
292 TN = VADD(Tk, Tm);
|
Chris@42
|
293 Tr = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
294 Tp = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@42
|
295 Tq = VCONJ(Tp);
|
Chris@42
|
296 Ts = VSUB(Tq, Tr);
|
Chris@42
|
297 TP = VADD(Tq, Tr);
|
Chris@42
|
298 T1F = VADD(TM, TN);
|
Chris@42
|
299 T1G = VADD(TP, TQ);
|
Chris@42
|
300 To = VFNMS(LDK(KP382683432), Tn, VMUL(LDK(KP923879532), Tj));
|
Chris@42
|
301 Tx = VFMA(LDK(KP923879532), Ts, VMUL(LDK(KP382683432), Tw));
|
Chris@42
|
302 Ty = VADD(To, Tx);
|
Chris@42
|
303 T19 = VSUB(To, Tx);
|
Chris@42
|
304 TA = VFMA(LDK(KP382683432), Tj, VMUL(LDK(KP923879532), Tn));
|
Chris@42
|
305 TB = VFNMS(LDK(KP382683432), Ts, VMUL(LDK(KP923879532), Tw));
|
Chris@42
|
306 TC = VADD(TA, TB);
|
Chris@42
|
307 T17 = VSUB(TA, TB);
|
Chris@42
|
308 TO = VSUB(TM, TN);
|
Chris@42
|
309 TR = VSUB(TP, TQ);
|
Chris@42
|
310 TS = VMUL(LDK(KP707106781), VSUB(TO, TR));
|
Chris@42
|
311 T10 = VMUL(LDK(KP707106781), VADD(TO, TR));
|
Chris@42
|
312 }
|
Chris@42
|
313 {
|
Chris@42
|
314 V T21, T1W, T1u, T20, T1I, T1O, TK, T1S, T12, T1e, T1k, T1A, T1o, T1w, T1c;
|
Chris@42
|
315 V T1M, T1U, T1V, T1T, T1s, T1t, T1r, T1Z, T1E, T1H, T1B, T1N, Tz, TJ, T1;
|
Chris@42
|
316 V T1R, TW, T11, TL, T1d, T1i, T1j, T1h, T1z, T1m, T1n, T1l, T1v, T18, T1b;
|
Chris@42
|
317 V T15, T1L, T13, T1g, T1X, T23, T14, T1f, T1Y, T22, T1p, T1y, T1J, T1Q, T1q;
|
Chris@42
|
318 V T1x, T1K, T1P;
|
Chris@42
|
319 T1U = VADD(T1C, T1D);
|
Chris@42
|
320 T1V = VADD(T1F, T1G);
|
Chris@42
|
321 T21 = VADD(T1U, T1V);
|
Chris@42
|
322 T1T = LDW(&(W[TWVL * 14]));
|
Chris@42
|
323 T1W = VZMUL(T1T, VSUB(T1U, T1V));
|
Chris@42
|
324 T1s = VADD(Tf, Ty);
|
Chris@42
|
325 T1t = VBYI(VADD(TI, TC));
|
Chris@42
|
326 T1r = LDW(&(W[TWVL * 28]));
|
Chris@42
|
327 T1u = VZMULI(T1r, VSUB(T1s, T1t));
|
Chris@42
|
328 T1Z = LDW(&(W[0]));
|
Chris@42
|
329 T20 = VZMULI(T1Z, VADD(T1s, T1t));
|
Chris@42
|
330 T1E = VSUB(T1C, T1D);
|
Chris@42
|
331 T1H = VBYI(VSUB(T1F, T1G));
|
Chris@42
|
332 T1B = LDW(&(W[TWVL * 22]));
|
Chris@42
|
333 T1I = VZMUL(T1B, VSUB(T1E, T1H));
|
Chris@42
|
334 T1N = LDW(&(W[TWVL * 6]));
|
Chris@42
|
335 T1O = VZMUL(T1N, VADD(T1E, T1H));
|
Chris@42
|
336 Tz = VSUB(Tf, Ty);
|
Chris@42
|
337 TJ = VBYI(VSUB(TC, TI));
|
Chris@42
|
338 T1 = LDW(&(W[TWVL * 12]));
|
Chris@42
|
339 TK = VZMULI(T1, VADD(Tz, TJ));
|
Chris@42
|
340 T1R = LDW(&(W[TWVL * 16]));
|
Chris@42
|
341 T1S = VZMULI(T1R, VSUB(Tz, TJ));
|
Chris@42
|
342 TW = VBYI(VSUB(TS, TV));
|
Chris@42
|
343 T11 = VSUB(TZ, T10);
|
Chris@42
|
344 TL = LDW(&(W[TWVL * 10]));
|
Chris@42
|
345 T12 = VZMUL(TL, VADD(TW, T11));
|
Chris@42
|
346 T1d = LDW(&(W[TWVL * 18]));
|
Chris@42
|
347 T1e = VZMUL(T1d, VSUB(T11, TW));
|
Chris@42
|
348 T1i = VBYI(VADD(T1a, T19));
|
Chris@42
|
349 T1j = VADD(T16, T17);
|
Chris@42
|
350 T1h = LDW(&(W[TWVL * 4]));
|
Chris@42
|
351 T1k = VZMULI(T1h, VADD(T1i, T1j));
|
Chris@42
|
352 T1z = LDW(&(W[TWVL * 24]));
|
Chris@42
|
353 T1A = VZMULI(T1z, VSUB(T1j, T1i));
|
Chris@42
|
354 T1m = VBYI(VADD(TV, TS));
|
Chris@42
|
355 T1n = VADD(TZ, T10);
|
Chris@42
|
356 T1l = LDW(&(W[TWVL * 2]));
|
Chris@42
|
357 T1o = VZMUL(T1l, VADD(T1m, T1n));
|
Chris@42
|
358 T1v = LDW(&(W[TWVL * 26]));
|
Chris@42
|
359 T1w = VZMUL(T1v, VSUB(T1n, T1m));
|
Chris@42
|
360 T18 = VSUB(T16, T17);
|
Chris@42
|
361 T1b = VBYI(VSUB(T19, T1a));
|
Chris@42
|
362 T15 = LDW(&(W[TWVL * 20]));
|
Chris@42
|
363 T1c = VZMULI(T15, VSUB(T18, T1b));
|
Chris@42
|
364 T1L = LDW(&(W[TWVL * 8]));
|
Chris@42
|
365 T1M = VZMULI(T1L, VADD(T1b, T18));
|
Chris@42
|
366 T13 = VADD(TK, T12);
|
Chris@42
|
367 ST(&(Rp[WS(rs, 3)]), T13, ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
368 T1g = VCONJ(VSUB(T1e, T1c));
|
Chris@42
|
369 ST(&(Rm[WS(rs, 5)]), T1g, -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
370 T1X = VADD(T1S, T1W);
|
Chris@42
|
371 ST(&(Rp[WS(rs, 4)]), T1X, ms, &(Rp[0]));
|
Chris@42
|
372 T23 = VCONJ(VSUB(T21, T20));
|
Chris@42
|
373 ST(&(Rm[0]), T23, -ms, &(Rm[0]));
|
Chris@42
|
374 T14 = VCONJ(VSUB(T12, TK));
|
Chris@42
|
375 ST(&(Rm[WS(rs, 3)]), T14, -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
376 T1f = VADD(T1c, T1e);
|
Chris@42
|
377 ST(&(Rp[WS(rs, 5)]), T1f, ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
378 T1Y = VCONJ(VSUB(T1W, T1S));
|
Chris@42
|
379 ST(&(Rm[WS(rs, 4)]), T1Y, -ms, &(Rm[0]));
|
Chris@42
|
380 T22 = VADD(T20, T21);
|
Chris@42
|
381 ST(&(Rp[0]), T22, ms, &(Rp[0]));
|
Chris@42
|
382 T1p = VADD(T1k, T1o);
|
Chris@42
|
383 ST(&(Rp[WS(rs, 1)]), T1p, ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
384 T1y = VCONJ(VSUB(T1w, T1u));
|
Chris@42
|
385 ST(&(Rm[WS(rs, 7)]), T1y, -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
386 T1J = VADD(T1A, T1I);
|
Chris@42
|
387 ST(&(Rp[WS(rs, 6)]), T1J, ms, &(Rp[0]));
|
Chris@42
|
388 T1Q = VCONJ(VSUB(T1O, T1M));
|
Chris@42
|
389 ST(&(Rm[WS(rs, 2)]), T1Q, -ms, &(Rm[0]));
|
Chris@42
|
390 T1q = VCONJ(VSUB(T1o, T1k));
|
Chris@42
|
391 ST(&(Rm[WS(rs, 1)]), T1q, -ms, &(Rm[WS(rs, 1)]));
|
Chris@42
|
392 T1x = VADD(T1u, T1w);
|
Chris@42
|
393 ST(&(Rp[WS(rs, 7)]), T1x, ms, &(Rp[WS(rs, 1)]));
|
Chris@42
|
394 T1K = VCONJ(VSUB(T1I, T1A));
|
Chris@42
|
395 ST(&(Rm[WS(rs, 6)]), T1K, -ms, &(Rm[0]));
|
Chris@42
|
396 T1P = VADD(T1M, T1O);
|
Chris@42
|
397 ST(&(Rp[WS(rs, 2)]), T1P, ms, &(Rp[0]));
|
Chris@42
|
398 }
|
Chris@42
|
399 }
|
Chris@42
|
400 }
|
Chris@42
|
401 VLEAVE();
|
Chris@42
|
402 }
|
Chris@42
|
403
|
Chris@42
|
404 static const tw_instr twinstr[] = {
|
Chris@42
|
405 VTW(1, 1),
|
Chris@42
|
406 VTW(1, 2),
|
Chris@42
|
407 VTW(1, 3),
|
Chris@42
|
408 VTW(1, 4),
|
Chris@42
|
409 VTW(1, 5),
|
Chris@42
|
410 VTW(1, 6),
|
Chris@42
|
411 VTW(1, 7),
|
Chris@42
|
412 VTW(1, 8),
|
Chris@42
|
413 VTW(1, 9),
|
Chris@42
|
414 VTW(1, 10),
|
Chris@42
|
415 VTW(1, 11),
|
Chris@42
|
416 VTW(1, 12),
|
Chris@42
|
417 VTW(1, 13),
|
Chris@42
|
418 VTW(1, 14),
|
Chris@42
|
419 VTW(1, 15),
|
Chris@42
|
420 {TW_NEXT, VL, 0}
|
Chris@42
|
421 };
|
Chris@42
|
422
|
Chris@42
|
423 static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cbdftv_16"), twinstr, &GENUS, {99, 38, 4, 0} };
|
Chris@42
|
424
|
Chris@42
|
425 void XSIMD(codelet_hc2cbdftv_16) (planner *p) {
|
Chris@42
|
426 X(khc2c_register) (p, hc2cbdftv_16, &desc, HC2C_VIA_DFT);
|
Chris@42
|
427 }
|
Chris@42
|
428 #endif /* HAVE_FMA */
|