annotate src/fftw-3.3.5/rdft/scalar/r2cb/hc2cbdft_10.c @ 56:af97cad61ff0

Add updated build of PortAudio for OSX
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 03 Jan 2017 15:10:52 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:51:56 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-rdft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include hc2cb.h */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 122 FP additions, 72 FP multiplications,
Chris@42 32 * (or, 68 additions, 18 multiplications, 54 fused multiply/add),
Chris@42 33 * 95 stack variables, 4 constants, and 40 memory accesses
Chris@42 34 */
Chris@42 35 #include "hc2cb.h"
Chris@42 36
Chris@42 37 static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@42 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@42 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@42 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@42 43 {
Chris@42 44 INT m;
Chris@42 45 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
Chris@42 46 E T2d, T2f;
Chris@42 47 {
Chris@42 48 E T1g, TQ, T1z, TZ, Tu, T23, T1p, T14, Tt, T27, T13, Tj, Tz, T1i, T18;
Chris@42 49 E TJ, TS, T19, Ty, TA;
Chris@42 50 {
Chris@42 51 E Tl, T3, T7, Tm, T6, Tr, TY, T1n, Th, T8, T1, T2;
Chris@42 52 T1 = Rp[0];
Chris@42 53 T2 = Rm[WS(rs, 4)];
Chris@42 54 {
Chris@42 55 E Te, Tp, Td, Tf, Tb, Tc;
Chris@42 56 Tb = Rp[WS(rs, 4)];
Chris@42 57 Tc = Rm[0];
Chris@42 58 Te = Rm[WS(rs, 3)];
Chris@42 59 Tl = T1 - T2;
Chris@42 60 T3 = T1 + T2;
Chris@42 61 Tp = Tb - Tc;
Chris@42 62 Td = Tb + Tc;
Chris@42 63 Tf = Rp[WS(rs, 1)];
Chris@42 64 {
Chris@42 65 E T4, T5, Tq, Tg;
Chris@42 66 T4 = Rp[WS(rs, 2)];
Chris@42 67 T5 = Rm[WS(rs, 2)];
Chris@42 68 T7 = Rm[WS(rs, 1)];
Chris@42 69 Tq = Te - Tf;
Chris@42 70 Tg = Te + Tf;
Chris@42 71 Tm = T4 - T5;
Chris@42 72 T6 = T4 + T5;
Chris@42 73 Tr = Tp + Tq;
Chris@42 74 TY = Tp - Tq;
Chris@42 75 T1n = Td - Tg;
Chris@42 76 Th = Td + Tg;
Chris@42 77 T8 = Rp[WS(rs, 3)];
Chris@42 78 }
Chris@42 79 }
Chris@42 80 {
Chris@42 81 E TO, Tn, T9, TP;
Chris@42 82 TO = Ip[0];
Chris@42 83 Tn = T7 - T8;
Chris@42 84 T9 = T7 + T8;
Chris@42 85 TP = Im[WS(rs, 4)];
Chris@42 86 {
Chris@42 87 E TG, TH, TF, T16, TD, TE, Ti;
Chris@42 88 TD = Ip[WS(rs, 4)];
Chris@42 89 {
Chris@42 90 E TX, To, T1o, Ta, Ts;
Chris@42 91 TX = Tm - Tn;
Chris@42 92 To = Tm + Tn;
Chris@42 93 T1o = T6 - T9;
Chris@42 94 Ta = T6 + T9;
Chris@42 95 T1g = TO - TP;
Chris@42 96 TQ = TO + TP;
Chris@42 97 T1z = FNMS(KP618033988, TX, TY);
Chris@42 98 TZ = FMA(KP618033988, TY, TX);
Chris@42 99 Ts = To + Tr;
Chris@42 100 Tu = To - Tr;
Chris@42 101 T23 = FMA(KP618033988, T1n, T1o);
Chris@42 102 T1p = FNMS(KP618033988, T1o, T1n);
Chris@42 103 Ti = Ta + Th;
Chris@42 104 T14 = Ta - Th;
Chris@42 105 Tt = FNMS(KP250000000, Ts, Tl);
Chris@42 106 T27 = Tl + Ts;
Chris@42 107 TE = Im[0];
Chris@42 108 }
Chris@42 109 T13 = FNMS(KP250000000, Ti, T3);
Chris@42 110 Tj = T3 + Ti;
Chris@42 111 TG = Im[WS(rs, 3)];
Chris@42 112 TH = Ip[WS(rs, 1)];
Chris@42 113 TF = TD + TE;
Chris@42 114 T16 = TD - TE;
Chris@42 115 {
Chris@42 116 E Tw, T17, TI, Tx;
Chris@42 117 Tw = Ip[WS(rs, 2)];
Chris@42 118 T17 = TH - TG;
Chris@42 119 TI = TG + TH;
Chris@42 120 Tx = Im[WS(rs, 2)];
Chris@42 121 Tz = Im[WS(rs, 1)];
Chris@42 122 T1i = T16 + T17;
Chris@42 123 T18 = T16 - T17;
Chris@42 124 TJ = TF + TI;
Chris@42 125 TS = TF - TI;
Chris@42 126 T19 = Tw - Tx;
Chris@42 127 Ty = Tw + Tx;
Chris@42 128 TA = Ip[WS(rs, 3)];
Chris@42 129 }
Chris@42 130 }
Chris@42 131 }
Chris@42 132 }
Chris@42 133 {
Chris@42 134 E T26, T2y, T2a, T28, T1q, T1K, T24, T2k, T10, T1Q, T1A, T2q, T29, Tk, TN;
Chris@42 135 E T2c, T1M, T1P, T2w, TM, T1O, T1S, T1s, T1x, T2m, T2p, T1w, T1C, T2o, T2s;
Chris@42 136 E T12, T1f, T1G, T1J, T1I, T1E, T1e, T1U, T1W, T21, T2g, T2j, T20, T2e, T2i;
Chris@42 137 E T2u, T1a, TB;
Chris@42 138 T1a = TA - Tz;
Chris@42 139 TB = Tz + TA;
Chris@42 140 {
Chris@42 141 E T1Y, T1c, T1u, T1t, T1N, TL, TK, Tv, T2n, T1v;
Chris@42 142 {
Chris@42 143 E T1l, TV, T1k, TU, T1b, T1h;
Chris@42 144 T26 = W[9];
Chris@42 145 T1b = T19 - T1a;
Chris@42 146 T1h = T19 + T1a;
Chris@42 147 {
Chris@42 148 E TC, TR, T1j, TT;
Chris@42 149 TC = Ty + TB;
Chris@42 150 TR = Ty - TB;
Chris@42 151 T1Y = FMA(KP618033988, T18, T1b);
Chris@42 152 T1c = FNMS(KP618033988, T1b, T18);
Chris@42 153 T1j = T1h + T1i;
Chris@42 154 T1l = T1h - T1i;
Chris@42 155 T1u = FNMS(KP618033988, TC, TJ);
Chris@42 156 TK = FMA(KP618033988, TJ, TC);
Chris@42 157 TT = TR + TS;
Chris@42 158 TV = TR - TS;
Chris@42 159 T2y = T1g + T1j;
Chris@42 160 T1k = FNMS(KP250000000, T1j, T1g);
Chris@42 161 T2a = TQ + TT;
Chris@42 162 TU = FNMS(KP250000000, TT, TQ);
Chris@42 163 T28 = T26 * T27;
Chris@42 164 }
Chris@42 165 {
Chris@42 166 E T22, T1m, T1y, TW;
Chris@42 167 T22 = FMA(KP559016994, T1l, T1k);
Chris@42 168 T1m = FNMS(KP559016994, T1l, T1k);
Chris@42 169 T1y = FNMS(KP559016994, TV, TU);
Chris@42 170 TW = FMA(KP559016994, TV, TU);
Chris@42 171 T1q = FNMS(KP951056516, T1p, T1m);
Chris@42 172 T1K = FMA(KP951056516, T1p, T1m);
Chris@42 173 T24 = FNMS(KP951056516, T23, T22);
Chris@42 174 T2k = FMA(KP951056516, T23, T22);
Chris@42 175 T10 = FMA(KP951056516, TZ, TW);
Chris@42 176 T1Q = FNMS(KP951056516, TZ, TW);
Chris@42 177 T1A = FMA(KP951056516, T1z, T1y);
Chris@42 178 T2q = FNMS(KP951056516, T1z, T1y);
Chris@42 179 T29 = W[8];
Chris@42 180 }
Chris@42 181 }
Chris@42 182 Tv = FMA(KP559016994, Tu, Tt);
Chris@42 183 T1t = FNMS(KP559016994, Tu, Tt);
Chris@42 184 Tk = W[1];
Chris@42 185 TN = W[0];
Chris@42 186 T2c = T29 * T27;
Chris@42 187 T1N = FMA(KP951056516, TK, Tv);
Chris@42 188 TL = FNMS(KP951056516, TK, Tv);
Chris@42 189 T1M = W[17];
Chris@42 190 T1P = W[16];
Chris@42 191 T2w = TN * TL;
Chris@42 192 TM = Tk * TL;
Chris@42 193 T1O = T1M * T1N;
Chris@42 194 T1S = T1P * T1N;
Chris@42 195 T2n = FMA(KP951056516, T1u, T1t);
Chris@42 196 T1v = FNMS(KP951056516, T1u, T1t);
Chris@42 197 T1s = W[5];
Chris@42 198 T1x = W[4];
Chris@42 199 T2m = W[13];
Chris@42 200 T2p = W[12];
Chris@42 201 T1w = T1s * T1v;
Chris@42 202 T1C = T1x * T1v;
Chris@42 203 T2o = T2m * T2n;
Chris@42 204 T2s = T2p * T2n;
Chris@42 205 {
Chris@42 206 E T1X, T1d, T1H, T15, T2h, T1Z;
Chris@42 207 T1X = FMA(KP559016994, T14, T13);
Chris@42 208 T15 = FNMS(KP559016994, T14, T13);
Chris@42 209 T12 = W[2];
Chris@42 210 T1f = W[3];
Chris@42 211 T1G = W[14];
Chris@42 212 T1d = FMA(KP951056516, T1c, T15);
Chris@42 213 T1H = FNMS(KP951056516, T1c, T15);
Chris@42 214 T1J = W[15];
Chris@42 215 T1I = T1G * T1H;
Chris@42 216 T1E = T1f * T1d;
Chris@42 217 T1e = T12 * T1d;
Chris@42 218 T1U = T1J * T1H;
Chris@42 219 T2h = FNMS(KP951056516, T1Y, T1X);
Chris@42 220 T1Z = FMA(KP951056516, T1Y, T1X);
Chris@42 221 T1W = W[6];
Chris@42 222 T21 = W[7];
Chris@42 223 T2g = W[10];
Chris@42 224 T2j = W[11];
Chris@42 225 T20 = T1W * T1Z;
Chris@42 226 T2e = T21 * T1Z;
Chris@42 227 T2i = T2g * T2h;
Chris@42 228 T2u = T2j * T2h;
Chris@42 229 }
Chris@42 230 }
Chris@42 231 {
Chris@42 232 E T1D, T1F, T1L, T1R;
Chris@42 233 {
Chris@42 234 E T11, T2x, T1r, T1B;
Chris@42 235 T11 = FMA(TN, T10, TM);
Chris@42 236 T2x = FNMS(Tk, T10, T2w);
Chris@42 237 T1r = FNMS(T1f, T1q, T1e);
Chris@42 238 T1B = FMA(T1x, T1A, T1w);
Chris@42 239 Rm[0] = Tj + T11;
Chris@42 240 Rp[0] = Tj - T11;
Chris@42 241 Ip[0] = T2x + T2y;
Chris@42 242 Im[0] = T2x - T2y;
Chris@42 243 Rp[WS(rs, 1)] = T1r - T1B;
Chris@42 244 Rm[WS(rs, 1)] = T1B + T1r;
Chris@42 245 T1D = FNMS(T1s, T1A, T1C);
Chris@42 246 T1F = FMA(T12, T1q, T1E);
Chris@42 247 T1L = FNMS(T1J, T1K, T1I);
Chris@42 248 T1R = FMA(T1P, T1Q, T1O);
Chris@42 249 }
Chris@42 250 {
Chris@42 251 E T1T, T1V, T2t, T2v;
Chris@42 252 T1T = FNMS(T1M, T1Q, T1S);
Chris@42 253 Ip[WS(rs, 1)] = T1D + T1F;
Chris@42 254 Im[WS(rs, 1)] = T1D - T1F;
Chris@42 255 Rm[WS(rs, 4)] = T1R + T1L;
Chris@42 256 Rp[WS(rs, 4)] = T1L - T1R;
Chris@42 257 T1V = FMA(T1G, T1K, T1U);
Chris@42 258 T2t = FNMS(T2m, T2q, T2s);
Chris@42 259 T2v = FMA(T2g, T2k, T2u);
Chris@42 260 {
Chris@42 261 E T2l, T2r, T25, T2b;
Chris@42 262 T2l = FNMS(T2j, T2k, T2i);
Chris@42 263 Ip[WS(rs, 4)] = T1T + T1V;
Chris@42 264 Im[WS(rs, 4)] = T1T - T1V;
Chris@42 265 Ip[WS(rs, 3)] = T2t + T2v;
Chris@42 266 Im[WS(rs, 3)] = T2t - T2v;
Chris@42 267 T2r = FMA(T2p, T2q, T2o);
Chris@42 268 T25 = FNMS(T21, T24, T20);
Chris@42 269 T2b = FMA(T29, T2a, T28);
Chris@42 270 T2d = FNMS(T26, T2a, T2c);
Chris@42 271 Rm[WS(rs, 3)] = T2r + T2l;
Chris@42 272 Rp[WS(rs, 3)] = T2l - T2r;
Chris@42 273 Rm[WS(rs, 2)] = T2b + T25;
Chris@42 274 Rp[WS(rs, 2)] = T25 - T2b;
Chris@42 275 T2f = FMA(T1W, T24, T2e);
Chris@42 276 }
Chris@42 277 }
Chris@42 278 }
Chris@42 279 }
Chris@42 280 }
Chris@42 281 Ip[WS(rs, 2)] = T2d + T2f;
Chris@42 282 Im[WS(rs, 2)] = T2d - T2f;
Chris@42 283 }
Chris@42 284 }
Chris@42 285 }
Chris@42 286
Chris@42 287 static const tw_instr twinstr[] = {
Chris@42 288 {TW_FULL, 1, 10},
Chris@42 289 {TW_NEXT, 1, 0}
Chris@42 290 };
Chris@42 291
Chris@42 292 static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, {68, 18, 54, 0} };
Chris@42 293
Chris@42 294 void X(codelet_hc2cbdft_10) (planner *p) {
Chris@42 295 X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT);
Chris@42 296 }
Chris@42 297 #else /* HAVE_FMA */
Chris@42 298
Chris@42 299 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include hc2cb.h */
Chris@42 300
Chris@42 301 /*
Chris@42 302 * This function contains 122 FP additions, 60 FP multiplications,
Chris@42 303 * (or, 92 additions, 30 multiplications, 30 fused multiply/add),
Chris@42 304 * 61 stack variables, 4 constants, and 40 memory accesses
Chris@42 305 */
Chris@42 306 #include "hc2cb.h"
Chris@42 307
Chris@42 308 static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 309 {
Chris@42 310 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@42 311 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@42 312 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@42 313 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@42 314 {
Chris@42 315 INT m;
Chris@42 316 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
Chris@42 317 E T3, TS, TR, T13, Ti, T12, TT, TU, T1g, T1T, Tr, T1s, TJ, T1h, TG;
Chris@42 318 E T1m, TK, TL, T1k, T1l, T1b, T1P, TY, T1w;
Chris@42 319 {
Chris@42 320 E Td, To, Tg, Tp, Th, TQ, T6, Tl, T9, Tm, Ta, TP, T1, T2;
Chris@42 321 T1 = Rp[0];
Chris@42 322 T2 = Rm[WS(rs, 4)];
Chris@42 323 T3 = T1 + T2;
Chris@42 324 TS = T1 - T2;
Chris@42 325 {
Chris@42 326 E Tb, Tc, Te, Tf;
Chris@42 327 Tb = Rp[WS(rs, 4)];
Chris@42 328 Tc = Rm[0];
Chris@42 329 Td = Tb + Tc;
Chris@42 330 To = Tb - Tc;
Chris@42 331 Te = Rm[WS(rs, 3)];
Chris@42 332 Tf = Rp[WS(rs, 1)];
Chris@42 333 Tg = Te + Tf;
Chris@42 334 Tp = Te - Tf;
Chris@42 335 }
Chris@42 336 Th = Td + Tg;
Chris@42 337 TQ = To + Tp;
Chris@42 338 {
Chris@42 339 E T4, T5, T7, T8;
Chris@42 340 T4 = Rp[WS(rs, 2)];
Chris@42 341 T5 = Rm[WS(rs, 2)];
Chris@42 342 T6 = T4 + T5;
Chris@42 343 Tl = T4 - T5;
Chris@42 344 T7 = Rm[WS(rs, 1)];
Chris@42 345 T8 = Rp[WS(rs, 3)];
Chris@42 346 T9 = T7 + T8;
Chris@42 347 Tm = T7 - T8;
Chris@42 348 }
Chris@42 349 Ta = T6 + T9;
Chris@42 350 TP = Tl + Tm;
Chris@42 351 TR = KP559016994 * (TP - TQ);
Chris@42 352 T13 = KP559016994 * (Ta - Th);
Chris@42 353 Ti = Ta + Th;
Chris@42 354 T12 = FNMS(KP250000000, Ti, T3);
Chris@42 355 TT = TP + TQ;
Chris@42 356 TU = FNMS(KP250000000, TT, TS);
Chris@42 357 {
Chris@42 358 E T1e, T1f, Tn, Tq;
Chris@42 359 T1e = T6 - T9;
Chris@42 360 T1f = Td - Tg;
Chris@42 361 T1g = FNMS(KP951056516, T1f, KP587785252 * T1e);
Chris@42 362 T1T = FMA(KP951056516, T1e, KP587785252 * T1f);
Chris@42 363 Tn = Tl - Tm;
Chris@42 364 Tq = To - Tp;
Chris@42 365 Tr = FMA(KP951056516, Tn, KP587785252 * Tq);
Chris@42 366 T1s = FNMS(KP951056516, Tq, KP587785252 * Tn);
Chris@42 367 }
Chris@42 368 }
Chris@42 369 {
Chris@42 370 E TB, T18, TE, T19, TF, T1j, Tu, T15, Tx, T16, Ty, T1i, TH, TI;
Chris@42 371 TH = Ip[0];
Chris@42 372 TI = Im[WS(rs, 4)];
Chris@42 373 TJ = TH + TI;
Chris@42 374 T1h = TH - TI;
Chris@42 375 {
Chris@42 376 E Tz, TA, TC, TD;
Chris@42 377 Tz = Ip[WS(rs, 4)];
Chris@42 378 TA = Im[0];
Chris@42 379 TB = Tz + TA;
Chris@42 380 T18 = Tz - TA;
Chris@42 381 TC = Im[WS(rs, 3)];
Chris@42 382 TD = Ip[WS(rs, 1)];
Chris@42 383 TE = TC + TD;
Chris@42 384 T19 = TD - TC;
Chris@42 385 }
Chris@42 386 TF = TB - TE;
Chris@42 387 T1j = T18 + T19;
Chris@42 388 {
Chris@42 389 E Ts, Tt, Tv, Tw;
Chris@42 390 Ts = Ip[WS(rs, 2)];
Chris@42 391 Tt = Im[WS(rs, 2)];
Chris@42 392 Tu = Ts + Tt;
Chris@42 393 T15 = Ts - Tt;
Chris@42 394 Tv = Im[WS(rs, 1)];
Chris@42 395 Tw = Ip[WS(rs, 3)];
Chris@42 396 Tx = Tv + Tw;
Chris@42 397 T16 = Tw - Tv;
Chris@42 398 }
Chris@42 399 Ty = Tu - Tx;
Chris@42 400 T1i = T15 + T16;
Chris@42 401 TG = KP559016994 * (Ty - TF);
Chris@42 402 T1m = KP559016994 * (T1i - T1j);
Chris@42 403 TK = Ty + TF;
Chris@42 404 TL = FNMS(KP250000000, TK, TJ);
Chris@42 405 T1k = T1i + T1j;
Chris@42 406 T1l = FNMS(KP250000000, T1k, T1h);
Chris@42 407 {
Chris@42 408 E T17, T1a, TW, TX;
Chris@42 409 T17 = T15 - T16;
Chris@42 410 T1a = T18 - T19;
Chris@42 411 T1b = FNMS(KP951056516, T1a, KP587785252 * T17);
Chris@42 412 T1P = FMA(KP951056516, T17, KP587785252 * T1a);
Chris@42 413 TW = Tu + Tx;
Chris@42 414 TX = TB + TE;
Chris@42 415 TY = FMA(KP951056516, TW, KP587785252 * TX);
Chris@42 416 T1w = FNMS(KP951056516, TX, KP587785252 * TW);
Chris@42 417 }
Chris@42 418 }
Chris@42 419 {
Chris@42 420 E Tj, T2g, TN, T1H, T1U, T26, TZ, T1J, T1Q, T24, T1c, T1C, T1t, T29, T1o;
Chris@42 421 E T1E, T1x, T2b, T20, T21, TM, T1S, TV;
Chris@42 422 Tj = T3 + Ti;
Chris@42 423 T2g = T1h + T1k;
Chris@42 424 TM = TG + TL;
Chris@42 425 TN = Tr + TM;
Chris@42 426 T1H = TM - Tr;
Chris@42 427 T1S = T1m + T1l;
Chris@42 428 T1U = T1S - T1T;
Chris@42 429 T26 = T1T + T1S;
Chris@42 430 TV = TR + TU;
Chris@42 431 TZ = TV - TY;
Chris@42 432 T1J = TV + TY;
Chris@42 433 {
Chris@42 434 E T1O, T14, T1r, T1n, T1v;
Chris@42 435 T1O = T13 + T12;
Chris@42 436 T1Q = T1O + T1P;
Chris@42 437 T24 = T1O - T1P;
Chris@42 438 T14 = T12 - T13;
Chris@42 439 T1c = T14 - T1b;
Chris@42 440 T1C = T14 + T1b;
Chris@42 441 T1r = TL - TG;
Chris@42 442 T1t = T1r - T1s;
Chris@42 443 T29 = T1s + T1r;
Chris@42 444 T1n = T1l - T1m;
Chris@42 445 T1o = T1g + T1n;
Chris@42 446 T1E = T1n - T1g;
Chris@42 447 T1v = TU - TR;
Chris@42 448 T1x = T1v + T1w;
Chris@42 449 T2b = T1v - T1w;
Chris@42 450 {
Chris@42 451 E T1X, T1Z, T1W, T1Y;
Chris@42 452 T1X = TS + TT;
Chris@42 453 T1Z = TJ + TK;
Chris@42 454 T1W = W[9];
Chris@42 455 T1Y = W[8];
Chris@42 456 T20 = FMA(T1W, T1X, T1Y * T1Z);
Chris@42 457 T21 = FNMS(T1W, T1Z, T1Y * T1X);
Chris@42 458 }
Chris@42 459 }
Chris@42 460 {
Chris@42 461 E T10, T2f, Tk, TO;
Chris@42 462 Tk = W[0];
Chris@42 463 TO = W[1];
Chris@42 464 T10 = FMA(Tk, TN, TO * TZ);
Chris@42 465 T2f = FNMS(TO, TN, Tk * TZ);
Chris@42 466 Rp[0] = Tj - T10;
Chris@42 467 Ip[0] = T2f + T2g;
Chris@42 468 Rm[0] = Tj + T10;
Chris@42 469 Im[0] = T2f - T2g;
Chris@42 470 }
Chris@42 471 {
Chris@42 472 E T1V, T22, T1N, T1R;
Chris@42 473 T1N = W[6];
Chris@42 474 T1R = W[7];
Chris@42 475 T1V = FNMS(T1R, T1U, T1N * T1Q);
Chris@42 476 T22 = FMA(T1R, T1Q, T1N * T1U);
Chris@42 477 Rp[WS(rs, 2)] = T1V - T20;
Chris@42 478 Ip[WS(rs, 2)] = T21 + T22;
Chris@42 479 Rm[WS(rs, 2)] = T20 + T1V;
Chris@42 480 Im[WS(rs, 2)] = T21 - T22;
Chris@42 481 }
Chris@42 482 {
Chris@42 483 E T1p, T1A, T1y, T1z;
Chris@42 484 {
Chris@42 485 E T11, T1d, T1q, T1u;
Chris@42 486 T11 = W[2];
Chris@42 487 T1d = W[3];
Chris@42 488 T1p = FNMS(T1d, T1o, T11 * T1c);
Chris@42 489 T1A = FMA(T1d, T1c, T11 * T1o);
Chris@42 490 T1q = W[4];
Chris@42 491 T1u = W[5];
Chris@42 492 T1y = FMA(T1q, T1t, T1u * T1x);
Chris@42 493 T1z = FNMS(T1u, T1t, T1q * T1x);
Chris@42 494 }
Chris@42 495 Rp[WS(rs, 1)] = T1p - T1y;
Chris@42 496 Ip[WS(rs, 1)] = T1z + T1A;
Chris@42 497 Rm[WS(rs, 1)] = T1y + T1p;
Chris@42 498 Im[WS(rs, 1)] = T1z - T1A;
Chris@42 499 }
Chris@42 500 {
Chris@42 501 E T1F, T1M, T1K, T1L;
Chris@42 502 {
Chris@42 503 E T1B, T1D, T1G, T1I;
Chris@42 504 T1B = W[14];
Chris@42 505 T1D = W[15];
Chris@42 506 T1F = FNMS(T1D, T1E, T1B * T1C);
Chris@42 507 T1M = FMA(T1D, T1C, T1B * T1E);
Chris@42 508 T1G = W[16];
Chris@42 509 T1I = W[17];
Chris@42 510 T1K = FMA(T1G, T1H, T1I * T1J);
Chris@42 511 T1L = FNMS(T1I, T1H, T1G * T1J);
Chris@42 512 }
Chris@42 513 Rp[WS(rs, 4)] = T1F - T1K;
Chris@42 514 Ip[WS(rs, 4)] = T1L + T1M;
Chris@42 515 Rm[WS(rs, 4)] = T1K + T1F;
Chris@42 516 Im[WS(rs, 4)] = T1L - T1M;
Chris@42 517 }
Chris@42 518 {
Chris@42 519 E T27, T2e, T2c, T2d;
Chris@42 520 {
Chris@42 521 E T23, T25, T28, T2a;
Chris@42 522 T23 = W[10];
Chris@42 523 T25 = W[11];
Chris@42 524 T27 = FNMS(T25, T26, T23 * T24);
Chris@42 525 T2e = FMA(T25, T24, T23 * T26);
Chris@42 526 T28 = W[12];
Chris@42 527 T2a = W[13];
Chris@42 528 T2c = FMA(T28, T29, T2a * T2b);
Chris@42 529 T2d = FNMS(T2a, T29, T28 * T2b);
Chris@42 530 }
Chris@42 531 Rp[WS(rs, 3)] = T27 - T2c;
Chris@42 532 Ip[WS(rs, 3)] = T2d + T2e;
Chris@42 533 Rm[WS(rs, 3)] = T2c + T27;
Chris@42 534 Im[WS(rs, 3)] = T2d - T2e;
Chris@42 535 }
Chris@42 536 }
Chris@42 537 }
Chris@42 538 }
Chris@42 539 }
Chris@42 540
Chris@42 541 static const tw_instr twinstr[] = {
Chris@42 542 {TW_FULL, 1, 10},
Chris@42 543 {TW_NEXT, 1, 0}
Chris@42 544 };
Chris@42 545
Chris@42 546 static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, {92, 30, 30, 0} };
Chris@42 547
Chris@42 548 void X(codelet_hc2cbdft_10) (planner *p) {
Chris@42 549 X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT);
Chris@42 550 }
Chris@42 551 #endif /* HAVE_FMA */