annotate src/fftw-3.3.5/rdft/scalar/r2cb/hc2cb_10.c @ 56:af97cad61ff0

Add updated build of PortAudio for OSX
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 03 Jan 2017 15:10:52 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:51:30 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-rdft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cb_10 -include hc2cb.h */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 102 FP additions, 72 FP multiplications,
Chris@42 32 * (or, 48 additions, 18 multiplications, 54 fused multiply/add),
Chris@42 33 * 71 stack variables, 4 constants, and 40 memory accesses
Chris@42 34 */
Chris@42 35 #include "hc2cb.h"
Chris@42 36
Chris@42 37 static void hc2cb_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@42 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@42 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@42 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@42 43 {
Chris@42 44 INT m;
Chris@42 45 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
Chris@42 46 E T21, T1Y, T1X;
Chris@42 47 {
Chris@42 48 E T1B, TH, T1g, T3, T1V, T1x, T1G, T1E, TM, TK, T11, TB, T7, T1m, T1J;
Chris@42 49 E TO, Th, T1h, T6, T8, TF, TG, T1i, T9;
Chris@42 50 TF = Ip[0];
Chris@42 51 TG = Im[WS(rs, 4)];
Chris@42 52 {
Chris@42 53 E T1u, Tp, Tu, T1s, Tz, T1v, Ts, Tv;
Chris@42 54 {
Chris@42 55 E Tx, Ty, Tn, To, Tq, Tr;
Chris@42 56 Tn = Ip[WS(rs, 4)];
Chris@42 57 To = Im[0];
Chris@42 58 Tx = Ip[WS(rs, 3)];
Chris@42 59 T1B = TF + TG;
Chris@42 60 TH = TF - TG;
Chris@42 61 T1u = Tn + To;
Chris@42 62 Tp = Tn - To;
Chris@42 63 Ty = Im[WS(rs, 1)];
Chris@42 64 Tq = Ip[WS(rs, 1)];
Chris@42 65 Tr = Im[WS(rs, 3)];
Chris@42 66 Tu = Ip[WS(rs, 2)];
Chris@42 67 T1s = Tx + Ty;
Chris@42 68 Tz = Tx - Ty;
Chris@42 69 T1v = Tq + Tr;
Chris@42 70 Ts = Tq - Tr;
Chris@42 71 Tv = Im[WS(rs, 2)];
Chris@42 72 }
Chris@42 73 {
Chris@42 74 E T1, T1w, T1D, TJ, Tt, T1r, Tw, T2;
Chris@42 75 T1 = Rp[0];
Chris@42 76 T1w = T1u + T1v;
Chris@42 77 T1D = T1u - T1v;
Chris@42 78 TJ = Tp + Ts;
Chris@42 79 Tt = Tp - Ts;
Chris@42 80 T1r = Tu + Tv;
Chris@42 81 Tw = Tu - Tv;
Chris@42 82 T2 = Rm[WS(rs, 4)];
Chris@42 83 {
Chris@42 84 E Tb, Tc, Te, Tf;
Chris@42 85 Tb = Rp[WS(rs, 4)];
Chris@42 86 {
Chris@42 87 E T1t, T1C, TI, TA;
Chris@42 88 T1t = T1r + T1s;
Chris@42 89 T1C = T1r - T1s;
Chris@42 90 TI = Tw + Tz;
Chris@42 91 TA = Tw - Tz;
Chris@42 92 T1g = T1 - T2;
Chris@42 93 T3 = T1 + T2;
Chris@42 94 T1V = FNMS(KP618033988, T1t, T1w);
Chris@42 95 T1x = FMA(KP618033988, T1w, T1t);
Chris@42 96 T1G = T1C - T1D;
Chris@42 97 T1E = T1C + T1D;
Chris@42 98 TM = TI - TJ;
Chris@42 99 TK = TI + TJ;
Chris@42 100 T11 = FMA(KP618033988, Tt, TA);
Chris@42 101 TB = FNMS(KP618033988, TA, Tt);
Chris@42 102 Tc = Rm[0];
Chris@42 103 }
Chris@42 104 Te = Rm[WS(rs, 3)];
Chris@42 105 Tf = Rp[WS(rs, 1)];
Chris@42 106 {
Chris@42 107 E T4, T1k, Td, T1l, Tg, T5;
Chris@42 108 T4 = Rp[WS(rs, 2)];
Chris@42 109 T1k = Tb - Tc;
Chris@42 110 Td = Tb + Tc;
Chris@42 111 T1l = Te - Tf;
Chris@42 112 Tg = Te + Tf;
Chris@42 113 T5 = Rm[WS(rs, 2)];
Chris@42 114 T7 = Rm[WS(rs, 1)];
Chris@42 115 T1m = T1k + T1l;
Chris@42 116 T1J = T1k - T1l;
Chris@42 117 TO = Td - Tg;
Chris@42 118 Th = Td + Tg;
Chris@42 119 T1h = T4 - T5;
Chris@42 120 T6 = T4 + T5;
Chris@42 121 T8 = Rp[WS(rs, 3)];
Chris@42 122 }
Chris@42 123 }
Chris@42 124 }
Chris@42 125 }
Chris@42 126 Rm[0] = TH + TK;
Chris@42 127 T1i = T7 - T8;
Chris@42 128 T9 = T7 + T8;
Chris@42 129 {
Chris@42 130 E T2d, T1F, T29, T1I, TP, T2c, T1p, Tl, T1o, Tk, T2b, T2e, T17, T14, T13;
Chris@42 131 T2d = T1B + T1E;
Chris@42 132 T1F = FNMS(KP250000000, T1E, T1B);
Chris@42 133 {
Chris@42 134 E T1j, Ta, T1n, Ti, T2a;
Chris@42 135 T29 = W[8];
Chris@42 136 T1I = T1h - T1i;
Chris@42 137 T1j = T1h + T1i;
Chris@42 138 TP = T6 - T9;
Chris@42 139 Ta = T6 + T9;
Chris@42 140 T2c = W[9];
Chris@42 141 T1p = T1j - T1m;
Chris@42 142 T1n = T1j + T1m;
Chris@42 143 Tl = Ta - Th;
Chris@42 144 Ti = Ta + Th;
Chris@42 145 T1o = FNMS(KP250000000, T1n, T1g);
Chris@42 146 T2a = T1g + T1n;
Chris@42 147 Rp[0] = T3 + Ti;
Chris@42 148 Tk = FNMS(KP250000000, Ti, T3);
Chris@42 149 T2b = T29 * T2a;
Chris@42 150 T2e = T2c * T2a;
Chris@42 151 }
Chris@42 152 {
Chris@42 153 E T16, TQ, T10, Tm, TL;
Chris@42 154 T16 = FMA(KP618033988, TO, TP);
Chris@42 155 TQ = FNMS(KP618033988, TP, TO);
Chris@42 156 Ip[WS(rs, 2)] = FNMS(T2c, T2d, T2b);
Chris@42 157 Im[WS(rs, 2)] = FMA(T29, T2d, T2e);
Chris@42 158 T10 = FMA(KP559016994, Tl, Tk);
Chris@42 159 Tm = FNMS(KP559016994, Tl, Tk);
Chris@42 160 TL = FNMS(KP250000000, TK, TH);
Chris@42 161 {
Chris@42 162 E TE, TU, T12, TR, TX, T1d, T1c, T19, TD, T1e, T1b, TW, TT;
Chris@42 163 {
Chris@42 164 E TC, T15, T1a, TS, Tj, TN;
Chris@42 165 TE = W[3];
Chris@42 166 TC = FMA(KP951056516, TB, Tm);
Chris@42 167 TU = FNMS(KP951056516, TB, Tm);
Chris@42 168 TN = FNMS(KP559016994, TM, TL);
Chris@42 169 T15 = FMA(KP559016994, TM, TL);
Chris@42 170 T12 = FMA(KP951056516, T11, T10);
Chris@42 171 T1a = FNMS(KP951056516, T11, T10);
Chris@42 172 TS = TE * TC;
Chris@42 173 TR = FNMS(KP951056516, TQ, TN);
Chris@42 174 TX = FMA(KP951056516, TQ, TN);
Chris@42 175 Tj = W[2];
Chris@42 176 T1d = FMA(KP951056516, T16, T15);
Chris@42 177 T17 = FNMS(KP951056516, T16, T15);
Chris@42 178 T1c = W[11];
Chris@42 179 T19 = W[10];
Chris@42 180 Rm[WS(rs, 1)] = FMA(Tj, TR, TS);
Chris@42 181 TD = Tj * TC;
Chris@42 182 T1e = T1c * T1a;
Chris@42 183 T1b = T19 * T1a;
Chris@42 184 }
Chris@42 185 Rp[WS(rs, 1)] = FNMS(TE, TR, TD);
Chris@42 186 Rm[WS(rs, 3)] = FMA(T19, T1d, T1e);
Chris@42 187 Rp[WS(rs, 3)] = FNMS(T1c, T1d, T1b);
Chris@42 188 TW = W[15];
Chris@42 189 TT = W[14];
Chris@42 190 {
Chris@42 191 E TZ, T18, TY, TV;
Chris@42 192 T14 = W[7];
Chris@42 193 TY = TW * TU;
Chris@42 194 TV = TT * TU;
Chris@42 195 TZ = W[6];
Chris@42 196 T18 = T14 * T12;
Chris@42 197 Rm[WS(rs, 4)] = FMA(TT, TX, TY);
Chris@42 198 Rp[WS(rs, 4)] = FNMS(TW, TX, TV);
Chris@42 199 T13 = TZ * T12;
Chris@42 200 Rm[WS(rs, 2)] = FMA(TZ, T17, T18);
Chris@42 201 }
Chris@42 202 }
Chris@42 203 }
Chris@42 204 {
Chris@42 205 E T20, T1K, T1q, T1U;
Chris@42 206 T20 = FNMS(KP618033988, T1I, T1J);
Chris@42 207 T1K = FMA(KP618033988, T1J, T1I);
Chris@42 208 Rp[WS(rs, 2)] = FNMS(T14, T17, T13);
Chris@42 209 T1q = FMA(KP559016994, T1p, T1o);
Chris@42 210 T1U = FNMS(KP559016994, T1p, T1o);
Chris@42 211 {
Chris@42 212 E T1A, T1O, T1W, T1R, T1L, T27, T26, T23, T1z, T28, T25, T1Q, T1N;
Chris@42 213 {
Chris@42 214 E T1y, T1Z, T24, T1M, T1f, T1H;
Chris@42 215 T1A = W[1];
Chris@42 216 T1O = FMA(KP951056516, T1x, T1q);
Chris@42 217 T1y = FNMS(KP951056516, T1x, T1q);
Chris@42 218 T1Z = FNMS(KP559016994, T1G, T1F);
Chris@42 219 T1H = FMA(KP559016994, T1G, T1F);
Chris@42 220 T24 = FMA(KP951056516, T1V, T1U);
Chris@42 221 T1W = FNMS(KP951056516, T1V, T1U);
Chris@42 222 T1M = T1A * T1y;
Chris@42 223 T1R = FNMS(KP951056516, T1K, T1H);
Chris@42 224 T1L = FMA(KP951056516, T1K, T1H);
Chris@42 225 T1f = W[0];
Chris@42 226 T21 = FMA(KP951056516, T20, T1Z);
Chris@42 227 T27 = FNMS(KP951056516, T20, T1Z);
Chris@42 228 T26 = W[13];
Chris@42 229 T23 = W[12];
Chris@42 230 Im[0] = FMA(T1f, T1L, T1M);
Chris@42 231 T1z = T1f * T1y;
Chris@42 232 T28 = T26 * T24;
Chris@42 233 T25 = T23 * T24;
Chris@42 234 }
Chris@42 235 Ip[0] = FNMS(T1A, T1L, T1z);
Chris@42 236 Im[WS(rs, 3)] = FMA(T23, T27, T28);
Chris@42 237 Ip[WS(rs, 3)] = FNMS(T26, T27, T25);
Chris@42 238 T1Q = W[17];
Chris@42 239 T1N = W[16];
Chris@42 240 {
Chris@42 241 E T1T, T22, T1S, T1P;
Chris@42 242 T1Y = W[5];
Chris@42 243 T1S = T1Q * T1O;
Chris@42 244 T1P = T1N * T1O;
Chris@42 245 T1T = W[4];
Chris@42 246 T22 = T1Y * T1W;
Chris@42 247 Im[WS(rs, 4)] = FMA(T1N, T1R, T1S);
Chris@42 248 Ip[WS(rs, 4)] = FNMS(T1Q, T1R, T1P);
Chris@42 249 T1X = T1T * T1W;
Chris@42 250 Im[WS(rs, 1)] = FMA(T1T, T21, T22);
Chris@42 251 }
Chris@42 252 }
Chris@42 253 }
Chris@42 254 }
Chris@42 255 }
Chris@42 256 Ip[WS(rs, 1)] = FNMS(T1Y, T21, T1X);
Chris@42 257 }
Chris@42 258 }
Chris@42 259 }
Chris@42 260
Chris@42 261 static const tw_instr twinstr[] = {
Chris@42 262 {TW_FULL, 1, 10},
Chris@42 263 {TW_NEXT, 1, 0}
Chris@42 264 };
Chris@42 265
Chris@42 266 static const hc2c_desc desc = { 10, "hc2cb_10", twinstr, &GENUS, {48, 18, 54, 0} };
Chris@42 267
Chris@42 268 void X(codelet_hc2cb_10) (planner *p) {
Chris@42 269 X(khc2c_register) (p, hc2cb_10, &desc, HC2C_VIA_RDFT);
Chris@42 270 }
Chris@42 271 #else /* HAVE_FMA */
Chris@42 272
Chris@42 273 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cb_10 -include hc2cb.h */
Chris@42 274
Chris@42 275 /*
Chris@42 276 * This function contains 102 FP additions, 60 FP multiplications,
Chris@42 277 * (or, 72 additions, 30 multiplications, 30 fused multiply/add),
Chris@42 278 * 39 stack variables, 4 constants, and 40 memory accesses
Chris@42 279 */
Chris@42 280 #include "hc2cb.h"
Chris@42 281
Chris@42 282 static void hc2cb_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 283 {
Chris@42 284 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@42 285 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@42 286 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@42 287 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@42 288 {
Chris@42 289 INT m;
Chris@42 290 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
Chris@42 291 E T3, T18, TJ, T1i, TE, TF, T1B, T1A, T1f, T1t, Ti, Tl, Tt, TA, T1w;
Chris@42 292 E T1v, T1p, T1E, TM, TO;
Chris@42 293 {
Chris@42 294 E T1, T2, TH, TI;
Chris@42 295 T1 = Rp[0];
Chris@42 296 T2 = Rm[WS(rs, 4)];
Chris@42 297 T3 = T1 + T2;
Chris@42 298 T18 = T1 - T2;
Chris@42 299 TH = Ip[0];
Chris@42 300 TI = Im[WS(rs, 4)];
Chris@42 301 TJ = TH - TI;
Chris@42 302 T1i = TH + TI;
Chris@42 303 }
Chris@42 304 {
Chris@42 305 E T6, T19, Tg, T1d, T9, T1a, Td, T1c;
Chris@42 306 {
Chris@42 307 E T4, T5, Te, Tf;
Chris@42 308 T4 = Rp[WS(rs, 2)];
Chris@42 309 T5 = Rm[WS(rs, 2)];
Chris@42 310 T6 = T4 + T5;
Chris@42 311 T19 = T4 - T5;
Chris@42 312 Te = Rm[WS(rs, 3)];
Chris@42 313 Tf = Rp[WS(rs, 1)];
Chris@42 314 Tg = Te + Tf;
Chris@42 315 T1d = Te - Tf;
Chris@42 316 }
Chris@42 317 {
Chris@42 318 E T7, T8, Tb, Tc;
Chris@42 319 T7 = Rm[WS(rs, 1)];
Chris@42 320 T8 = Rp[WS(rs, 3)];
Chris@42 321 T9 = T7 + T8;
Chris@42 322 T1a = T7 - T8;
Chris@42 323 Tb = Rp[WS(rs, 4)];
Chris@42 324 Tc = Rm[0];
Chris@42 325 Td = Tb + Tc;
Chris@42 326 T1c = Tb - Tc;
Chris@42 327 }
Chris@42 328 TE = T6 - T9;
Chris@42 329 TF = Td - Tg;
Chris@42 330 T1B = T1c - T1d;
Chris@42 331 T1A = T19 - T1a;
Chris@42 332 {
Chris@42 333 E T1b, T1e, Ta, Th;
Chris@42 334 T1b = T19 + T1a;
Chris@42 335 T1e = T1c + T1d;
Chris@42 336 T1f = T1b + T1e;
Chris@42 337 T1t = KP559016994 * (T1b - T1e);
Chris@42 338 Ta = T6 + T9;
Chris@42 339 Th = Td + Tg;
Chris@42 340 Ti = Ta + Th;
Chris@42 341 Tl = KP559016994 * (Ta - Th);
Chris@42 342 }
Chris@42 343 }
Chris@42 344 {
Chris@42 345 E Tp, T1j, Tz, T1n, Ts, T1k, Tw, T1m;
Chris@42 346 {
Chris@42 347 E Tn, To, Tx, Ty;
Chris@42 348 Tn = Ip[WS(rs, 2)];
Chris@42 349 To = Im[WS(rs, 2)];
Chris@42 350 Tp = Tn - To;
Chris@42 351 T1j = Tn + To;
Chris@42 352 Tx = Ip[WS(rs, 1)];
Chris@42 353 Ty = Im[WS(rs, 3)];
Chris@42 354 Tz = Tx - Ty;
Chris@42 355 T1n = Tx + Ty;
Chris@42 356 }
Chris@42 357 {
Chris@42 358 E Tq, Tr, Tu, Tv;
Chris@42 359 Tq = Ip[WS(rs, 3)];
Chris@42 360 Tr = Im[WS(rs, 1)];
Chris@42 361 Ts = Tq - Tr;
Chris@42 362 T1k = Tq + Tr;
Chris@42 363 Tu = Ip[WS(rs, 4)];
Chris@42 364 Tv = Im[0];
Chris@42 365 Tw = Tu - Tv;
Chris@42 366 T1m = Tu + Tv;
Chris@42 367 }
Chris@42 368 Tt = Tp - Ts;
Chris@42 369 TA = Tw - Tz;
Chris@42 370 T1w = T1m + T1n;
Chris@42 371 T1v = T1j + T1k;
Chris@42 372 {
Chris@42 373 E T1l, T1o, TK, TL;
Chris@42 374 T1l = T1j - T1k;
Chris@42 375 T1o = T1m - T1n;
Chris@42 376 T1p = T1l + T1o;
Chris@42 377 T1E = KP559016994 * (T1l - T1o);
Chris@42 378 TK = Tp + Ts;
Chris@42 379 TL = Tw + Tz;
Chris@42 380 TM = TK + TL;
Chris@42 381 TO = KP559016994 * (TK - TL);
Chris@42 382 }
Chris@42 383 }
Chris@42 384 Rp[0] = T3 + Ti;
Chris@42 385 Rm[0] = TJ + TM;
Chris@42 386 {
Chris@42 387 E T1g, T1q, T17, T1h;
Chris@42 388 T1g = T18 + T1f;
Chris@42 389 T1q = T1i + T1p;
Chris@42 390 T17 = W[8];
Chris@42 391 T1h = W[9];
Chris@42 392 Ip[WS(rs, 2)] = FNMS(T1h, T1q, T17 * T1g);
Chris@42 393 Im[WS(rs, 2)] = FMA(T1h, T1g, T17 * T1q);
Chris@42 394 }
Chris@42 395 {
Chris@42 396 E TB, TG, T11, TX, TP, T10, Tm, TW, TN, Tk;
Chris@42 397 TB = FNMS(KP951056516, TA, KP587785252 * Tt);
Chris@42 398 TG = FNMS(KP951056516, TF, KP587785252 * TE);
Chris@42 399 T11 = FMA(KP951056516, TE, KP587785252 * TF);
Chris@42 400 TX = FMA(KP951056516, Tt, KP587785252 * TA);
Chris@42 401 TN = FNMS(KP250000000, TM, TJ);
Chris@42 402 TP = TN - TO;
Chris@42 403 T10 = TO + TN;
Chris@42 404 Tk = FNMS(KP250000000, Ti, T3);
Chris@42 405 Tm = Tk - Tl;
Chris@42 406 TW = Tl + Tk;
Chris@42 407 {
Chris@42 408 E TC, TQ, Tj, TD;
Chris@42 409 TC = Tm - TB;
Chris@42 410 TQ = TG + TP;
Chris@42 411 Tj = W[2];
Chris@42 412 TD = W[3];
Chris@42 413 Rp[WS(rs, 1)] = FNMS(TD, TQ, Tj * TC);
Chris@42 414 Rm[WS(rs, 1)] = FMA(TD, TC, Tj * TQ);
Chris@42 415 }
Chris@42 416 {
Chris@42 417 E T14, T16, T13, T15;
Chris@42 418 T14 = TW - TX;
Chris@42 419 T16 = T11 + T10;
Chris@42 420 T13 = W[10];
Chris@42 421 T15 = W[11];
Chris@42 422 Rp[WS(rs, 3)] = FNMS(T15, T16, T13 * T14);
Chris@42 423 Rm[WS(rs, 3)] = FMA(T15, T14, T13 * T16);
Chris@42 424 }
Chris@42 425 {
Chris@42 426 E TS, TU, TR, TT;
Chris@42 427 TS = Tm + TB;
Chris@42 428 TU = TP - TG;
Chris@42 429 TR = W[14];
Chris@42 430 TT = W[15];
Chris@42 431 Rp[WS(rs, 4)] = FNMS(TT, TU, TR * TS);
Chris@42 432 Rm[WS(rs, 4)] = FMA(TT, TS, TR * TU);
Chris@42 433 }
Chris@42 434 {
Chris@42 435 E TY, T12, TV, TZ;
Chris@42 436 TY = TW + TX;
Chris@42 437 T12 = T10 - T11;
Chris@42 438 TV = W[6];
Chris@42 439 TZ = W[7];
Chris@42 440 Rp[WS(rs, 2)] = FNMS(TZ, T12, TV * TY);
Chris@42 441 Rm[WS(rs, 2)] = FMA(TZ, TY, TV * T12);
Chris@42 442 }
Chris@42 443 }
Chris@42 444 {
Chris@42 445 E T1x, T1C, T1Q, T1N, T1F, T1R, T1u, T1M, T1D, T1s;
Chris@42 446 T1x = FNMS(KP951056516, T1w, KP587785252 * T1v);
Chris@42 447 T1C = FNMS(KP951056516, T1B, KP587785252 * T1A);
Chris@42 448 T1Q = FMA(KP951056516, T1A, KP587785252 * T1B);
Chris@42 449 T1N = FMA(KP951056516, T1v, KP587785252 * T1w);
Chris@42 450 T1D = FNMS(KP250000000, T1p, T1i);
Chris@42 451 T1F = T1D - T1E;
Chris@42 452 T1R = T1E + T1D;
Chris@42 453 T1s = FNMS(KP250000000, T1f, T18);
Chris@42 454 T1u = T1s - T1t;
Chris@42 455 T1M = T1t + T1s;
Chris@42 456 {
Chris@42 457 E T1y, T1G, T1r, T1z;
Chris@42 458 T1y = T1u - T1x;
Chris@42 459 T1G = T1C + T1F;
Chris@42 460 T1r = W[12];
Chris@42 461 T1z = W[13];
Chris@42 462 Ip[WS(rs, 3)] = FNMS(T1z, T1G, T1r * T1y);
Chris@42 463 Im[WS(rs, 3)] = FMA(T1r, T1G, T1z * T1y);
Chris@42 464 }
Chris@42 465 {
Chris@42 466 E T1U, T1W, T1T, T1V;
Chris@42 467 T1U = T1M + T1N;
Chris@42 468 T1W = T1R - T1Q;
Chris@42 469 T1T = W[16];
Chris@42 470 T1V = W[17];
Chris@42 471 Ip[WS(rs, 4)] = FNMS(T1V, T1W, T1T * T1U);
Chris@42 472 Im[WS(rs, 4)] = FMA(T1T, T1W, T1V * T1U);
Chris@42 473 }
Chris@42 474 {
Chris@42 475 E T1I, T1K, T1H, T1J;
Chris@42 476 T1I = T1u + T1x;
Chris@42 477 T1K = T1F - T1C;
Chris@42 478 T1H = W[4];
Chris@42 479 T1J = W[5];
Chris@42 480 Ip[WS(rs, 1)] = FNMS(T1J, T1K, T1H * T1I);
Chris@42 481 Im[WS(rs, 1)] = FMA(T1H, T1K, T1J * T1I);
Chris@42 482 }
Chris@42 483 {
Chris@42 484 E T1O, T1S, T1L, T1P;
Chris@42 485 T1O = T1M - T1N;
Chris@42 486 T1S = T1Q + T1R;
Chris@42 487 T1L = W[0];
Chris@42 488 T1P = W[1];
Chris@42 489 Ip[0] = FNMS(T1P, T1S, T1L * T1O);
Chris@42 490 Im[0] = FMA(T1L, T1S, T1P * T1O);
Chris@42 491 }
Chris@42 492 }
Chris@42 493 }
Chris@42 494 }
Chris@42 495 }
Chris@42 496
Chris@42 497 static const tw_instr twinstr[] = {
Chris@42 498 {TW_FULL, 1, 10},
Chris@42 499 {TW_NEXT, 1, 0}
Chris@42 500 };
Chris@42 501
Chris@42 502 static const hc2c_desc desc = { 10, "hc2cb_10", twinstr, &GENUS, {72, 30, 30, 0} };
Chris@42 503
Chris@42 504 void X(codelet_hc2cb_10) (planner *p) {
Chris@42 505 X(khc2c_register) (p, hc2cb_10, &desc, HC2C_VIA_RDFT);
Chris@42 506 }
Chris@42 507 #endif /* HAVE_FMA */