annotate src/fftw-3.3.5/rdft/dft-r2hc.c @ 56:af97cad61ff0

Add updated build of PortAudio for OSX
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 03 Jan 2017 15:10:52 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21
Chris@42 22 /* Compute the complex DFT by combining R2HC RDFTs on the real
Chris@42 23 and imaginary parts. This could be useful for people just wanting
Chris@42 24 to link to the real codelets and not the complex ones. It could
Chris@42 25 also even be faster than the complex algorithms for split (as opposed
Chris@42 26 to interleaved) real/imag complex data. */
Chris@42 27
Chris@42 28 #include "rdft.h"
Chris@42 29 #include "dft.h"
Chris@42 30
Chris@42 31 typedef struct {
Chris@42 32 solver super;
Chris@42 33 } S;
Chris@42 34
Chris@42 35 typedef struct {
Chris@42 36 plan_dft super;
Chris@42 37 plan *cld;
Chris@42 38 INT ishift, oshift;
Chris@42 39 INT os;
Chris@42 40 INT n;
Chris@42 41 } P;
Chris@42 42
Chris@42 43 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
Chris@42 44 {
Chris@42 45 const P *ego = (const P *) ego_;
Chris@42 46 INT n;
Chris@42 47
Chris@42 48 UNUSED(ii);
Chris@42 49
Chris@42 50 { /* transform vector of real & imag parts: */
Chris@42 51 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@42 52 cld->apply((plan *) cld, ri + ego->ishift, ro + ego->oshift);
Chris@42 53 }
Chris@42 54
Chris@42 55 n = ego->n;
Chris@42 56 if (n > 1) {
Chris@42 57 INT i, os = ego->os;
Chris@42 58 for (i = 1; i < (n + 1)/2; ++i) {
Chris@42 59 E rop, iop, iom, rom;
Chris@42 60 rop = ro[os * i];
Chris@42 61 iop = io[os * i];
Chris@42 62 rom = ro[os * (n - i)];
Chris@42 63 iom = io[os * (n - i)];
Chris@42 64 ro[os * i] = rop - iom;
Chris@42 65 io[os * i] = iop + rom;
Chris@42 66 ro[os * (n - i)] = rop + iom;
Chris@42 67 io[os * (n - i)] = iop - rom;
Chris@42 68 }
Chris@42 69 }
Chris@42 70 }
Chris@42 71
Chris@42 72 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@42 73 {
Chris@42 74 P *ego = (P *) ego_;
Chris@42 75 X(plan_awake)(ego->cld, wakefulness);
Chris@42 76 }
Chris@42 77
Chris@42 78 static void destroy(plan *ego_)
Chris@42 79 {
Chris@42 80 P *ego = (P *) ego_;
Chris@42 81 X(plan_destroy_internal)(ego->cld);
Chris@42 82 }
Chris@42 83
Chris@42 84 static void print(const plan *ego_, printer *p)
Chris@42 85 {
Chris@42 86 const P *ego = (const P *) ego_;
Chris@42 87 p->print(p, "(dft-r2hc-%D%(%p%))", ego->n, ego->cld);
Chris@42 88 }
Chris@42 89
Chris@42 90
Chris@42 91 static int applicable0(const problem *p_)
Chris@42 92 {
Chris@42 93 const problem_dft *p = (const problem_dft *) p_;
Chris@42 94 return ((p->sz->rnk == 1 && p->vecsz->rnk == 0)
Chris@42 95 || (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk))
Chris@42 96 );
Chris@42 97 }
Chris@42 98
Chris@42 99 static int splitp(R *r, R *i, INT n, INT s)
Chris@42 100 {
Chris@42 101 return ((r > i ? (r - i) : (i - r)) >= n * (s > 0 ? s : 0-s));
Chris@42 102 }
Chris@42 103
Chris@42 104 static int applicable(const problem *p_, const planner *plnr)
Chris@42 105 {
Chris@42 106 if (!applicable0(p_)) return 0;
Chris@42 107
Chris@42 108 {
Chris@42 109 const problem_dft *p = (const problem_dft *) p_;
Chris@42 110
Chris@42 111 /* rank-0 problems are always OK */
Chris@42 112 if (p->sz->rnk == 0) return 1;
Chris@42 113
Chris@42 114 /* this solver is ok for split arrays */
Chris@42 115 if (p->sz->rnk == 1 &&
Chris@42 116 splitp(p->ri, p->ii, p->sz->dims[0].n, p->sz->dims[0].is) &&
Chris@42 117 splitp(p->ro, p->io, p->sz->dims[0].n, p->sz->dims[0].os))
Chris@42 118 return 1;
Chris@42 119
Chris@42 120 return !(NO_DFT_R2HCP(plnr));
Chris@42 121 }
Chris@42 122 }
Chris@42 123
Chris@42 124 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@42 125 {
Chris@42 126 P *pln;
Chris@42 127 const problem_dft *p;
Chris@42 128 plan *cld;
Chris@42 129 INT ishift = 0, oshift = 0;
Chris@42 130
Chris@42 131 static const plan_adt padt = {
Chris@42 132 X(dft_solve), awake, print, destroy
Chris@42 133 };
Chris@42 134
Chris@42 135 UNUSED(ego_);
Chris@42 136 if (!applicable(p_, plnr))
Chris@42 137 return (plan *)0;
Chris@42 138
Chris@42 139 p = (const problem_dft *) p_;
Chris@42 140
Chris@42 141 {
Chris@42 142 tensor *ri_vec = X(mktensor_1d)(2, p->ii - p->ri, p->io - p->ro);
Chris@42 143 tensor *cld_vec = X(tensor_append)(ri_vec, p->vecsz);
Chris@42 144 int i;
Chris@42 145 for (i = 0; i < cld_vec->rnk; ++i) { /* make all istrides > 0 */
Chris@42 146 if (cld_vec->dims[i].is < 0) {
Chris@42 147 INT nm1 = cld_vec->dims[i].n - 1;
Chris@42 148 ishift -= nm1 * (cld_vec->dims[i].is *= -1);
Chris@42 149 oshift -= nm1 * (cld_vec->dims[i].os *= -1);
Chris@42 150 }
Chris@42 151 }
Chris@42 152 cld = X(mkplan_d)(plnr,
Chris@42 153 X(mkproblem_rdft_1)(p->sz, cld_vec,
Chris@42 154 p->ri + ishift,
Chris@42 155 p->ro + oshift, R2HC));
Chris@42 156 X(tensor_destroy2)(ri_vec, cld_vec);
Chris@42 157 }
Chris@42 158 if (!cld) return (plan *)0;
Chris@42 159
Chris@42 160 pln = MKPLAN_DFT(P, &padt, apply);
Chris@42 161
Chris@42 162 if (p->sz->rnk == 0) {
Chris@42 163 pln->n = 1;
Chris@42 164 pln->os = 0;
Chris@42 165 }
Chris@42 166 else {
Chris@42 167 pln->n = p->sz->dims[0].n;
Chris@42 168 pln->os = p->sz->dims[0].os;
Chris@42 169 }
Chris@42 170 pln->ishift = ishift;
Chris@42 171 pln->oshift = oshift;
Chris@42 172
Chris@42 173 pln->cld = cld;
Chris@42 174
Chris@42 175 pln->super.super.ops = cld->ops;
Chris@42 176 pln->super.super.ops.other += 8 * ((pln->n - 1)/2);
Chris@42 177 pln->super.super.ops.add += 4 * ((pln->n - 1)/2);
Chris@42 178 pln->super.super.ops.other += 1; /* estimator hack for nop plans */
Chris@42 179
Chris@42 180 return &(pln->super.super);
Chris@42 181 }
Chris@42 182
Chris@42 183 /* constructor */
Chris@42 184 static solver *mksolver(void)
Chris@42 185 {
Chris@42 186 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
Chris@42 187 S *slv = MKSOLVER(S, &sadt);
Chris@42 188 return &(slv->super);
Chris@42 189 }
Chris@42 190
Chris@42 191 void X(dft_r2hc_register)(planner *p)
Chris@42 192 {
Chris@42 193 REGISTER_SOLVER(p, mksolver());
Chris@42 194 }