annotate src/libvorbis-1.3.3/lib/lsp.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 05aa0afa9217
children
rev   line source
Chris@1 1 /********************************************************************
Chris@1 2 * *
Chris@1 3 * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. *
Chris@1 4 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
Chris@1 5 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
Chris@1 6 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
Chris@1 7 * *
Chris@1 8 * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 *
Chris@1 9 * by the Xiph.Org Foundation http://www.xiph.org/ *
Chris@1 10 * *
Chris@1 11 ********************************************************************
Chris@1 12
Chris@1 13 function: LSP (also called LSF) conversion routines
Chris@1 14 last mod: $Id: lsp.c 17538 2010-10-15 02:52:29Z tterribe $
Chris@1 15
Chris@1 16 The LSP generation code is taken (with minimal modification and a
Chris@1 17 few bugfixes) from "On the Computation of the LSP Frequencies" by
Chris@1 18 Joseph Rothweiler (see http://www.rothweiler.us for contact info).
Chris@1 19 The paper is available at:
Chris@1 20
Chris@1 21 http://www.myown1.com/joe/lsf
Chris@1 22
Chris@1 23 ********************************************************************/
Chris@1 24
Chris@1 25 /* Note that the lpc-lsp conversion finds the roots of polynomial with
Chris@1 26 an iterative root polisher (CACM algorithm 283). It *is* possible
Chris@1 27 to confuse this algorithm into not converging; that should only
Chris@1 28 happen with absurdly closely spaced roots (very sharp peaks in the
Chris@1 29 LPC f response) which in turn should be impossible in our use of
Chris@1 30 the code. If this *does* happen anyway, it's a bug in the floor
Chris@1 31 finder; find the cause of the confusion (probably a single bin
Chris@1 32 spike or accidental near-float-limit resolution problems) and
Chris@1 33 correct it. */
Chris@1 34
Chris@1 35 #include <math.h>
Chris@1 36 #include <string.h>
Chris@1 37 #include <stdlib.h>
Chris@1 38 #include "lsp.h"
Chris@1 39 #include "os.h"
Chris@1 40 #include "misc.h"
Chris@1 41 #include "lookup.h"
Chris@1 42 #include "scales.h"
Chris@1 43
Chris@1 44 /* three possible LSP to f curve functions; the exact computation
Chris@1 45 (float), a lookup based float implementation, and an integer
Chris@1 46 implementation. The float lookup is likely the optimal choice on
Chris@1 47 any machine with an FPU. The integer implementation is *not* fixed
Chris@1 48 point (due to the need for a large dynamic range and thus a
Chris@1 49 separately tracked exponent) and thus much more complex than the
Chris@1 50 relatively simple float implementations. It's mostly for future
Chris@1 51 work on a fully fixed point implementation for processors like the
Chris@1 52 ARM family. */
Chris@1 53
Chris@1 54 /* define either of these (preferably FLOAT_LOOKUP) to have faster
Chris@1 55 but less precise implementation. */
Chris@1 56 #undef FLOAT_LOOKUP
Chris@1 57 #undef INT_LOOKUP
Chris@1 58
Chris@1 59 #ifdef FLOAT_LOOKUP
Chris@1 60 #include "lookup.c" /* catch this in the build system; we #include for
Chris@1 61 compilers (like gcc) that can't inline across
Chris@1 62 modules */
Chris@1 63
Chris@1 64 /* side effect: changes *lsp to cosines of lsp */
Chris@1 65 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
Chris@1 66 float amp,float ampoffset){
Chris@1 67 int i;
Chris@1 68 float wdel=M_PI/ln;
Chris@1 69 vorbis_fpu_control fpu;
Chris@1 70
Chris@1 71 vorbis_fpu_setround(&fpu);
Chris@1 72 for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]);
Chris@1 73
Chris@1 74 i=0;
Chris@1 75 while(i<n){
Chris@1 76 int k=map[i];
Chris@1 77 int qexp;
Chris@1 78 float p=.7071067812f;
Chris@1 79 float q=.7071067812f;
Chris@1 80 float w=vorbis_coslook(wdel*k);
Chris@1 81 float *ftmp=lsp;
Chris@1 82 int c=m>>1;
Chris@1 83
Chris@1 84 while(c--){
Chris@1 85 q*=ftmp[0]-w;
Chris@1 86 p*=ftmp[1]-w;
Chris@1 87 ftmp+=2;
Chris@1 88 }
Chris@1 89
Chris@1 90 if(m&1){
Chris@1 91 /* odd order filter; slightly assymetric */
Chris@1 92 /* the last coefficient */
Chris@1 93 q*=ftmp[0]-w;
Chris@1 94 q*=q;
Chris@1 95 p*=p*(1.f-w*w);
Chris@1 96 }else{
Chris@1 97 /* even order filter; still symmetric */
Chris@1 98 q*=q*(1.f+w);
Chris@1 99 p*=p*(1.f-w);
Chris@1 100 }
Chris@1 101
Chris@1 102 q=frexp(p+q,&qexp);
Chris@1 103 q=vorbis_fromdBlook(amp*
Chris@1 104 vorbis_invsqlook(q)*
Chris@1 105 vorbis_invsq2explook(qexp+m)-
Chris@1 106 ampoffset);
Chris@1 107
Chris@1 108 do{
Chris@1 109 curve[i++]*=q;
Chris@1 110 }while(map[i]==k);
Chris@1 111 }
Chris@1 112 vorbis_fpu_restore(fpu);
Chris@1 113 }
Chris@1 114
Chris@1 115 #else
Chris@1 116
Chris@1 117 #ifdef INT_LOOKUP
Chris@1 118 #include "lookup.c" /* catch this in the build system; we #include for
Chris@1 119 compilers (like gcc) that can't inline across
Chris@1 120 modules */
Chris@1 121
Chris@1 122 static const int MLOOP_1[64]={
Chris@1 123 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13,
Chris@1 124 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14,
Chris@1 125 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
Chris@1 126 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
Chris@1 127 };
Chris@1 128
Chris@1 129 static const int MLOOP_2[64]={
Chris@1 130 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7,
Chris@1 131 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8,
Chris@1 132 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
Chris@1 133 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
Chris@1 134 };
Chris@1 135
Chris@1 136 static const int MLOOP_3[8]={0,1,2,2,3,3,3,3};
Chris@1 137
Chris@1 138
Chris@1 139 /* side effect: changes *lsp to cosines of lsp */
Chris@1 140 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
Chris@1 141 float amp,float ampoffset){
Chris@1 142
Chris@1 143 /* 0 <= m < 256 */
Chris@1 144
Chris@1 145 /* set up for using all int later */
Chris@1 146 int i;
Chris@1 147 int ampoffseti=rint(ampoffset*4096.f);
Chris@1 148 int ampi=rint(amp*16.f);
Chris@1 149 long *ilsp=alloca(m*sizeof(*ilsp));
Chris@1 150 for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f);
Chris@1 151
Chris@1 152 i=0;
Chris@1 153 while(i<n){
Chris@1 154 int j,k=map[i];
Chris@1 155 unsigned long pi=46341; /* 2**-.5 in 0.16 */
Chris@1 156 unsigned long qi=46341;
Chris@1 157 int qexp=0,shift;
Chris@1 158 long wi=vorbis_coslook_i(k*65536/ln);
Chris@1 159
Chris@1 160 qi*=labs(ilsp[0]-wi);
Chris@1 161 pi*=labs(ilsp[1]-wi);
Chris@1 162
Chris@1 163 for(j=3;j<m;j+=2){
Chris@1 164 if(!(shift=MLOOP_1[(pi|qi)>>25]))
Chris@1 165 if(!(shift=MLOOP_2[(pi|qi)>>19]))
Chris@1 166 shift=MLOOP_3[(pi|qi)>>16];
Chris@1 167 qi=(qi>>shift)*labs(ilsp[j-1]-wi);
Chris@1 168 pi=(pi>>shift)*labs(ilsp[j]-wi);
Chris@1 169 qexp+=shift;
Chris@1 170 }
Chris@1 171 if(!(shift=MLOOP_1[(pi|qi)>>25]))
Chris@1 172 if(!(shift=MLOOP_2[(pi|qi)>>19]))
Chris@1 173 shift=MLOOP_3[(pi|qi)>>16];
Chris@1 174
Chris@1 175 /* pi,qi normalized collectively, both tracked using qexp */
Chris@1 176
Chris@1 177 if(m&1){
Chris@1 178 /* odd order filter; slightly assymetric */
Chris@1 179 /* the last coefficient */
Chris@1 180 qi=(qi>>shift)*labs(ilsp[j-1]-wi);
Chris@1 181 pi=(pi>>shift)<<14;
Chris@1 182 qexp+=shift;
Chris@1 183
Chris@1 184 if(!(shift=MLOOP_1[(pi|qi)>>25]))
Chris@1 185 if(!(shift=MLOOP_2[(pi|qi)>>19]))
Chris@1 186 shift=MLOOP_3[(pi|qi)>>16];
Chris@1 187
Chris@1 188 pi>>=shift;
Chris@1 189 qi>>=shift;
Chris@1 190 qexp+=shift-14*((m+1)>>1);
Chris@1 191
Chris@1 192 pi=((pi*pi)>>16);
Chris@1 193 qi=((qi*qi)>>16);
Chris@1 194 qexp=qexp*2+m;
Chris@1 195
Chris@1 196 pi*=(1<<14)-((wi*wi)>>14);
Chris@1 197 qi+=pi>>14;
Chris@1 198
Chris@1 199 }else{
Chris@1 200 /* even order filter; still symmetric */
Chris@1 201
Chris@1 202 /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't
Chris@1 203 worth tracking step by step */
Chris@1 204
Chris@1 205 pi>>=shift;
Chris@1 206 qi>>=shift;
Chris@1 207 qexp+=shift-7*m;
Chris@1 208
Chris@1 209 pi=((pi*pi)>>16);
Chris@1 210 qi=((qi*qi)>>16);
Chris@1 211 qexp=qexp*2+m;
Chris@1 212
Chris@1 213 pi*=(1<<14)-wi;
Chris@1 214 qi*=(1<<14)+wi;
Chris@1 215 qi=(qi+pi)>>14;
Chris@1 216
Chris@1 217 }
Chris@1 218
Chris@1 219
Chris@1 220 /* we've let the normalization drift because it wasn't important;
Chris@1 221 however, for the lookup, things must be normalized again. We
Chris@1 222 need at most one right shift or a number of left shifts */
Chris@1 223
Chris@1 224 if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */
Chris@1 225 qi>>=1; qexp++;
Chris@1 226 }else
Chris@1 227 while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/
Chris@1 228 qi<<=1; qexp--;
Chris@1 229 }
Chris@1 230
Chris@1 231 amp=vorbis_fromdBlook_i(ampi* /* n.4 */
Chris@1 232 vorbis_invsqlook_i(qi,qexp)-
Chris@1 233 /* m.8, m+n<=8 */
Chris@1 234 ampoffseti); /* 8.12[0] */
Chris@1 235
Chris@1 236 curve[i]*=amp;
Chris@1 237 while(map[++i]==k)curve[i]*=amp;
Chris@1 238 }
Chris@1 239 }
Chris@1 240
Chris@1 241 #else
Chris@1 242
Chris@1 243 /* old, nonoptimized but simple version for any poor sap who needs to
Chris@1 244 figure out what the hell this code does, or wants the other
Chris@1 245 fraction of a dB precision */
Chris@1 246
Chris@1 247 /* side effect: changes *lsp to cosines of lsp */
Chris@1 248 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
Chris@1 249 float amp,float ampoffset){
Chris@1 250 int i;
Chris@1 251 float wdel=M_PI/ln;
Chris@1 252 for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]);
Chris@1 253
Chris@1 254 i=0;
Chris@1 255 while(i<n){
Chris@1 256 int j,k=map[i];
Chris@1 257 float p=.5f;
Chris@1 258 float q=.5f;
Chris@1 259 float w=2.f*cos(wdel*k);
Chris@1 260 for(j=1;j<m;j+=2){
Chris@1 261 q *= w-lsp[j-1];
Chris@1 262 p *= w-lsp[j];
Chris@1 263 }
Chris@1 264 if(j==m){
Chris@1 265 /* odd order filter; slightly assymetric */
Chris@1 266 /* the last coefficient */
Chris@1 267 q*=w-lsp[j-1];
Chris@1 268 p*=p*(4.f-w*w);
Chris@1 269 q*=q;
Chris@1 270 }else{
Chris@1 271 /* even order filter; still symmetric */
Chris@1 272 p*=p*(2.f-w);
Chris@1 273 q*=q*(2.f+w);
Chris@1 274 }
Chris@1 275
Chris@1 276 q=fromdB(amp/sqrt(p+q)-ampoffset);
Chris@1 277
Chris@1 278 curve[i]*=q;
Chris@1 279 while(map[++i]==k)curve[i]*=q;
Chris@1 280 }
Chris@1 281 }
Chris@1 282
Chris@1 283 #endif
Chris@1 284 #endif
Chris@1 285
Chris@1 286 static void cheby(float *g, int ord) {
Chris@1 287 int i, j;
Chris@1 288
Chris@1 289 g[0] *= .5f;
Chris@1 290 for(i=2; i<= ord; i++) {
Chris@1 291 for(j=ord; j >= i; j--) {
Chris@1 292 g[j-2] -= g[j];
Chris@1 293 g[j] += g[j];
Chris@1 294 }
Chris@1 295 }
Chris@1 296 }
Chris@1 297
Chris@1 298 static int comp(const void *a,const void *b){
Chris@1 299 return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b);
Chris@1 300 }
Chris@1 301
Chris@1 302 /* Newton-Raphson-Maehly actually functioned as a decent root finder,
Chris@1 303 but there are root sets for which it gets into limit cycles
Chris@1 304 (exacerbated by zero suppression) and fails. We can't afford to
Chris@1 305 fail, even if the failure is 1 in 100,000,000, so we now use
Chris@1 306 Laguerre and later polish with Newton-Raphson (which can then
Chris@1 307 afford to fail) */
Chris@1 308
Chris@1 309 #define EPSILON 10e-7
Chris@1 310 static int Laguerre_With_Deflation(float *a,int ord,float *r){
Chris@1 311 int i,m;
Chris@1 312 double lastdelta=0.f;
Chris@1 313 double *defl=alloca(sizeof(*defl)*(ord+1));
Chris@1 314 for(i=0;i<=ord;i++)defl[i]=a[i];
Chris@1 315
Chris@1 316 for(m=ord;m>0;m--){
Chris@1 317 double new=0.f,delta;
Chris@1 318
Chris@1 319 /* iterate a root */
Chris@1 320 while(1){
Chris@1 321 double p=defl[m],pp=0.f,ppp=0.f,denom;
Chris@1 322
Chris@1 323 /* eval the polynomial and its first two derivatives */
Chris@1 324 for(i=m;i>0;i--){
Chris@1 325 ppp = new*ppp + pp;
Chris@1 326 pp = new*pp + p;
Chris@1 327 p = new*p + defl[i-1];
Chris@1 328 }
Chris@1 329
Chris@1 330 /* Laguerre's method */
Chris@1 331 denom=(m-1) * ((m-1)*pp*pp - m*p*ppp);
Chris@1 332 if(denom<0)
Chris@1 333 return(-1); /* complex root! The LPC generator handed us a bad filter */
Chris@1 334
Chris@1 335 if(pp>0){
Chris@1 336 denom = pp + sqrt(denom);
Chris@1 337 if(denom<EPSILON)denom=EPSILON;
Chris@1 338 }else{
Chris@1 339 denom = pp - sqrt(denom);
Chris@1 340 if(denom>-(EPSILON))denom=-(EPSILON);
Chris@1 341 }
Chris@1 342
Chris@1 343 delta = m*p/denom;
Chris@1 344 new -= delta;
Chris@1 345
Chris@1 346 if(delta<0.f)delta*=-1;
Chris@1 347
Chris@1 348 if(fabs(delta/new)<10e-12)break;
Chris@1 349 lastdelta=delta;
Chris@1 350 }
Chris@1 351
Chris@1 352 r[m-1]=new;
Chris@1 353
Chris@1 354 /* forward deflation */
Chris@1 355
Chris@1 356 for(i=m;i>0;i--)
Chris@1 357 defl[i-1]+=new*defl[i];
Chris@1 358 defl++;
Chris@1 359
Chris@1 360 }
Chris@1 361 return(0);
Chris@1 362 }
Chris@1 363
Chris@1 364
Chris@1 365 /* for spit-and-polish only */
Chris@1 366 static int Newton_Raphson(float *a,int ord,float *r){
Chris@1 367 int i, k, count=0;
Chris@1 368 double error=1.f;
Chris@1 369 double *root=alloca(ord*sizeof(*root));
Chris@1 370
Chris@1 371 for(i=0; i<ord;i++) root[i] = r[i];
Chris@1 372
Chris@1 373 while(error>1e-20){
Chris@1 374 error=0;
Chris@1 375
Chris@1 376 for(i=0; i<ord; i++) { /* Update each point. */
Chris@1 377 double pp=0.,delta;
Chris@1 378 double rooti=root[i];
Chris@1 379 double p=a[ord];
Chris@1 380 for(k=ord-1; k>= 0; k--) {
Chris@1 381
Chris@1 382 pp= pp* rooti + p;
Chris@1 383 p = p * rooti + a[k];
Chris@1 384 }
Chris@1 385
Chris@1 386 delta = p/pp;
Chris@1 387 root[i] -= delta;
Chris@1 388 error+= delta*delta;
Chris@1 389 }
Chris@1 390
Chris@1 391 if(count>40)return(-1);
Chris@1 392
Chris@1 393 count++;
Chris@1 394 }
Chris@1 395
Chris@1 396 /* Replaced the original bubble sort with a real sort. With your
Chris@1 397 help, we can eliminate the bubble sort in our lifetime. --Monty */
Chris@1 398
Chris@1 399 for(i=0; i<ord;i++) r[i] = root[i];
Chris@1 400 return(0);
Chris@1 401 }
Chris@1 402
Chris@1 403
Chris@1 404 /* Convert lpc coefficients to lsp coefficients */
Chris@1 405 int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
Chris@1 406 int order2=(m+1)>>1;
Chris@1 407 int g1_order,g2_order;
Chris@1 408 float *g1=alloca(sizeof(*g1)*(order2+1));
Chris@1 409 float *g2=alloca(sizeof(*g2)*(order2+1));
Chris@1 410 float *g1r=alloca(sizeof(*g1r)*(order2+1));
Chris@1 411 float *g2r=alloca(sizeof(*g2r)*(order2+1));
Chris@1 412 int i;
Chris@1 413
Chris@1 414 /* even and odd are slightly different base cases */
Chris@1 415 g1_order=(m+1)>>1;
Chris@1 416 g2_order=(m) >>1;
Chris@1 417
Chris@1 418 /* Compute the lengths of the x polynomials. */
Chris@1 419 /* Compute the first half of K & R F1 & F2 polynomials. */
Chris@1 420 /* Compute half of the symmetric and antisymmetric polynomials. */
Chris@1 421 /* Remove the roots at +1 and -1. */
Chris@1 422
Chris@1 423 g1[g1_order] = 1.f;
Chris@1 424 for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i];
Chris@1 425 g2[g2_order] = 1.f;
Chris@1 426 for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i];
Chris@1 427
Chris@1 428 if(g1_order>g2_order){
Chris@1 429 for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2];
Chris@1 430 }else{
Chris@1 431 for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1];
Chris@1 432 for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1];
Chris@1 433 }
Chris@1 434
Chris@1 435 /* Convert into polynomials in cos(alpha) */
Chris@1 436 cheby(g1,g1_order);
Chris@1 437 cheby(g2,g2_order);
Chris@1 438
Chris@1 439 /* Find the roots of the 2 even polynomials.*/
Chris@1 440 if(Laguerre_With_Deflation(g1,g1_order,g1r) ||
Chris@1 441 Laguerre_With_Deflation(g2,g2_order,g2r))
Chris@1 442 return(-1);
Chris@1 443
Chris@1 444 Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */
Chris@1 445 Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */
Chris@1 446
Chris@1 447 qsort(g1r,g1_order,sizeof(*g1r),comp);
Chris@1 448 qsort(g2r,g2_order,sizeof(*g2r),comp);
Chris@1 449
Chris@1 450 for(i=0;i<g1_order;i++)
Chris@1 451 lsp[i*2] = acos(g1r[i]);
Chris@1 452
Chris@1 453 for(i=0;i<g2_order;i++)
Chris@1 454 lsp[i*2+1] = acos(g2r[i]);
Chris@1 455 return(0);
Chris@1 456 }