annotate src/fftw-3.3.8/rdft/simd/common/hc2cbdftv_6.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
Chris@82 23
Chris@82 24 #include "rdft/codelet-rdft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include rdft/simd/hc2cbv.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 29 FP additions, 24 FP multiplications,
Chris@82 32 * (or, 17 additions, 12 multiplications, 12 fused multiply/add),
Chris@82 33 * 38 stack variables, 2 constants, and 12 memory accesses
Chris@82 34 */
Chris@82 35 #include "rdft/simd/hc2cbv.h"
Chris@82 36
Chris@82 37 static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 38 {
Chris@82 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 41 {
Chris@82 42 INT m;
Chris@82 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@82 44 V T4, Te, Tj, Tp, Tb, To, Th, Ti, Ta, Tg, T7, Tf, T2, T3, T8;
Chris@82 45 V T9, T5, T6, Tx, Tw, Tv, Ty, Tz, Tq, Ts, Tn, Tr, Tt, Tu, Tc;
Chris@82 46 V Tk, T1, Td, Tl, Tm;
Chris@82 47 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@82 48 T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@82 49 T4 = VFNMSCONJ(T3, T2);
Chris@82 50 Te = VFMACONJ(T3, T2);
Chris@82 51 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@82 52 T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@82 53 Ta = VFMSCONJ(T9, T8);
Chris@82 54 Tg = VFMACONJ(T9, T8);
Chris@82 55 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@82 56 T6 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@82 57 T7 = VFNMSCONJ(T6, T5);
Chris@82 58 Tf = VFMACONJ(T6, T5);
Chris@82 59 Tj = VMUL(LDK(KP866025403), VSUB(Tf, Tg));
Chris@82 60 Tp = VMUL(LDK(KP866025403), VSUB(T7, Ta));
Chris@82 61 Tb = VADD(T7, Ta);
Chris@82 62 To = VFNMS(LDK(KP500000000), Tb, T4);
Chris@82 63 Th = VADD(Tf, Tg);
Chris@82 64 Ti = VFNMS(LDK(KP500000000), Th, Te);
Chris@82 65 Tx = VADD(Te, Th);
Chris@82 66 Tv = LDW(&(W[0]));
Chris@82 67 Tw = VZMULI(Tv, VFMAI(Tp, To));
Chris@82 68 Ty = VADD(Tw, Tx);
Chris@82 69 ST(&(Rp[0]), Ty, ms, &(Rp[0]));
Chris@82 70 Tz = VCONJ(VSUB(Tx, Tw));
Chris@82 71 ST(&(Rm[0]), Tz, -ms, &(Rm[0]));
Chris@82 72 Tn = LDW(&(W[TWVL * 8]));
Chris@82 73 Tq = VZMULI(Tn, VFNMSI(Tp, To));
Chris@82 74 Tr = LDW(&(W[TWVL * 6]));
Chris@82 75 Ts = VZMUL(Tr, VFMAI(Tj, Ti));
Chris@82 76 Tt = VADD(Tq, Ts);
Chris@82 77 ST(&(Rp[WS(rs, 2)]), Tt, ms, &(Rp[0]));
Chris@82 78 Tu = VCONJ(VSUB(Ts, Tq));
Chris@82 79 ST(&(Rm[WS(rs, 2)]), Tu, -ms, &(Rm[0]));
Chris@82 80 T1 = LDW(&(W[TWVL * 4]));
Chris@82 81 Tc = VZMULI(T1, VADD(T4, Tb));
Chris@82 82 Td = LDW(&(W[TWVL * 2]));
Chris@82 83 Tk = VZMUL(Td, VFNMSI(Tj, Ti));
Chris@82 84 Tl = VADD(Tc, Tk);
Chris@82 85 ST(&(Rp[WS(rs, 1)]), Tl, ms, &(Rp[WS(rs, 1)]));
Chris@82 86 Tm = VCONJ(VSUB(Tk, Tc));
Chris@82 87 ST(&(Rm[WS(rs, 1)]), Tm, -ms, &(Rm[WS(rs, 1)]));
Chris@82 88 }
Chris@82 89 }
Chris@82 90 VLEAVE();
Chris@82 91 }
Chris@82 92
Chris@82 93 static const tw_instr twinstr[] = {
Chris@82 94 VTW(1, 1),
Chris@82 95 VTW(1, 2),
Chris@82 96 VTW(1, 3),
Chris@82 97 VTW(1, 4),
Chris@82 98 VTW(1, 5),
Chris@82 99 {TW_NEXT, VL, 0}
Chris@82 100 };
Chris@82 101
Chris@82 102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {17, 12, 12, 0} };
Chris@82 103
Chris@82 104 void XSIMD(codelet_hc2cbdftv_6) (planner *p) {
Chris@82 105 X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT);
Chris@82 106 }
Chris@82 107 #else
Chris@82 108
Chris@82 109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include rdft/simd/hc2cbv.h */
Chris@82 110
Chris@82 111 /*
Chris@82 112 * This function contains 29 FP additions, 14 FP multiplications,
Chris@82 113 * (or, 27 additions, 12 multiplications, 2 fused multiply/add),
Chris@82 114 * 41 stack variables, 2 constants, and 12 memory accesses
Chris@82 115 */
Chris@82 116 #include "rdft/simd/hc2cbv.h"
Chris@82 117
Chris@82 118 static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 119 {
Chris@82 120 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 122 {
Chris@82 123 INT m;
Chris@82 124 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@82 125 V T5, Th, Te, Ts, Tk, Tm, T2, T4, T3, T6, Tc, T8, Tb, T7, Ta;
Chris@82 126 V T9, Td, Ti, Tj, TA, Tf, Tn, Tv, Tt, Tz, T1, Tl, Tg, Tu, Tr;
Chris@82 127 V Tq, Ty, To, Tp, TC, TB, Tx, Tw;
Chris@82 128 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@82 129 T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@82 130 T4 = VCONJ(T3);
Chris@82 131 T5 = VSUB(T2, T4);
Chris@82 132 Th = VADD(T2, T4);
Chris@82 133 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@82 134 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@82 135 T7 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@82 136 T8 = VCONJ(T7);
Chris@82 137 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@82 138 Tb = VCONJ(Ta);
Chris@82 139 T9 = VSUB(T6, T8);
Chris@82 140 Td = VSUB(Tb, Tc);
Chris@82 141 Te = VADD(T9, Td);
Chris@82 142 Ts = VBYI(VMUL(LDK(KP866025403), VSUB(T9, Td)));
Chris@82 143 Ti = VADD(T6, T8);
Chris@82 144 Tj = VADD(Tb, Tc);
Chris@82 145 Tk = VADD(Ti, Tj);
Chris@82 146 Tm = VBYI(VMUL(LDK(KP866025403), VSUB(Ti, Tj)));
Chris@82 147 TA = VADD(Th, Tk);
Chris@82 148 T1 = LDW(&(W[TWVL * 4]));
Chris@82 149 Tf = VZMULI(T1, VADD(T5, Te));
Chris@82 150 Tl = VFNMS(LDK(KP500000000), Tk, Th);
Chris@82 151 Tg = LDW(&(W[TWVL * 2]));
Chris@82 152 Tn = VZMUL(Tg, VSUB(Tl, Tm));
Chris@82 153 Tu = LDW(&(W[TWVL * 6]));
Chris@82 154 Tv = VZMUL(Tu, VADD(Tm, Tl));
Chris@82 155 Tr = VFNMS(LDK(KP500000000), Te, T5);
Chris@82 156 Tq = LDW(&(W[TWVL * 8]));
Chris@82 157 Tt = VZMULI(Tq, VSUB(Tr, Ts));
Chris@82 158 Ty = LDW(&(W[0]));
Chris@82 159 Tz = VZMULI(Ty, VADD(Ts, Tr));
Chris@82 160 To = VADD(Tf, Tn);
Chris@82 161 ST(&(Rp[WS(rs, 1)]), To, ms, &(Rp[WS(rs, 1)]));
Chris@82 162 Tp = VCONJ(VSUB(Tn, Tf));
Chris@82 163 ST(&(Rm[WS(rs, 1)]), Tp, -ms, &(Rm[WS(rs, 1)]));
Chris@82 164 TC = VCONJ(VSUB(TA, Tz));
Chris@82 165 ST(&(Rm[0]), TC, -ms, &(Rm[0]));
Chris@82 166 TB = VADD(Tz, TA);
Chris@82 167 ST(&(Rp[0]), TB, ms, &(Rp[0]));
Chris@82 168 Tx = VCONJ(VSUB(Tv, Tt));
Chris@82 169 ST(&(Rm[WS(rs, 2)]), Tx, -ms, &(Rm[0]));
Chris@82 170 Tw = VADD(Tt, Tv);
Chris@82 171 ST(&(Rp[WS(rs, 2)]), Tw, ms, &(Rp[0]));
Chris@82 172 }
Chris@82 173 }
Chris@82 174 VLEAVE();
Chris@82 175 }
Chris@82 176
Chris@82 177 static const tw_instr twinstr[] = {
Chris@82 178 VTW(1, 1),
Chris@82 179 VTW(1, 2),
Chris@82 180 VTW(1, 3),
Chris@82 181 VTW(1, 4),
Chris@82 182 VTW(1, 5),
Chris@82 183 {TW_NEXT, VL, 0}
Chris@82 184 };
Chris@82 185
Chris@82 186 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {27, 12, 2, 0} };
Chris@82 187
Chris@82 188 void XSIMD(codelet_hc2cbdftv_6) (planner *p) {
Chris@82 189 X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT);
Chris@82 190 }
Chris@82 191 #endif