annotate src/fftw-3.3.8/rdft/scalar/r2cf/r2cfII_12.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:06:43 EDT 2018 */
Chris@82 23
Chris@82 24 #include "rdft/codelet-rdft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cfII_12 -dft-II -include rdft/scalar/r2cfII.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 45 FP additions, 24 FP multiplications,
Chris@82 32 * (or, 21 additions, 0 multiplications, 24 fused multiply/add),
Chris@82 33 * 28 stack variables, 3 constants, and 24 memory accesses
Chris@82 34 */
Chris@82 35 #include "rdft/scalar/r2cfII.h"
Chris@82 36
Chris@82 37 static void r2cfII_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@82 38 {
Chris@82 39 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 40 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@82 41 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 42 {
Chris@82 43 INT i;
Chris@82 44 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
Chris@82 45 E Tx, Ty, T8, Tz, Tl, Tm, Tv, T5, TA, Tt, Te, Tf, Tu, T6, T7;
Chris@82 46 E Tw, TF, TG;
Chris@82 47 Tx = R0[WS(rs, 3)];
Chris@82 48 T6 = R0[WS(rs, 5)];
Chris@82 49 T7 = R0[WS(rs, 1)];
Chris@82 50 Ty = T6 + T7;
Chris@82 51 T8 = T6 - T7;
Chris@82 52 Tz = FMA(KP500000000, Ty, Tx);
Chris@82 53 {
Chris@82 54 E Th, Ti, Tj, Tk;
Chris@82 55 Th = R1[WS(rs, 4)];
Chris@82 56 Ti = R1[WS(rs, 2)];
Chris@82 57 Tj = R1[0];
Chris@82 58 Tk = Ti - Tj;
Chris@82 59 Tl = FMA(KP500000000, Tk, Th);
Chris@82 60 Tm = Ti + Tj;
Chris@82 61 Tv = Ti - Tj - Th;
Chris@82 62 }
Chris@82 63 {
Chris@82 64 E T1, T2, T3, T4;
Chris@82 65 T1 = R0[0];
Chris@82 66 T2 = R0[WS(rs, 2)];
Chris@82 67 T3 = R0[WS(rs, 4)];
Chris@82 68 T4 = T2 - T3;
Chris@82 69 T5 = FMA(KP500000000, T4, T1);
Chris@82 70 TA = T3 + T2;
Chris@82 71 Tt = T1 + T3 - T2;
Chris@82 72 }
Chris@82 73 {
Chris@82 74 E Ta, Tb, Tc, Td;
Chris@82 75 Ta = R1[WS(rs, 1)];
Chris@82 76 Tb = R1[WS(rs, 3)];
Chris@82 77 Tc = R1[WS(rs, 5)];
Chris@82 78 Td = Tb - Tc;
Chris@82 79 Te = FMA(KP500000000, Td, Ta);
Chris@82 80 Tf = Tc + Tb;
Chris@82 81 Tu = Ta + Tc - Tb;
Chris@82 82 }
Chris@82 83 Tw = Tu + Tv;
Chris@82 84 Cr[WS(csr, 1)] = FNMS(KP707106781, Tw, Tt);
Chris@82 85 Cr[WS(csr, 4)] = FMA(KP707106781, Tw, Tt);
Chris@82 86 TF = Tx - Ty;
Chris@82 87 TG = Tv - Tu;
Chris@82 88 Ci[WS(csi, 4)] = FMS(KP707106781, TG, TF);
Chris@82 89 Ci[WS(csi, 1)] = FMA(KP707106781, TG, TF);
Chris@82 90 {
Chris@82 91 E T9, TD, To, TE, Tg, Tn;
Chris@82 92 T9 = FNMS(KP866025403, T8, T5);
Chris@82 93 TD = FNMS(KP866025403, TA, Tz);
Chris@82 94 Tg = FNMS(KP866025403, Tf, Te);
Chris@82 95 Tn = FNMS(KP866025403, Tm, Tl);
Chris@82 96 To = Tg - Tn;
Chris@82 97 TE = Tg + Tn;
Chris@82 98 Cr[WS(csr, 5)] = FNMS(KP707106781, To, T9);
Chris@82 99 Ci[WS(csi, 3)] = FMA(KP707106781, TE, TD);
Chris@82 100 Cr[0] = FMA(KP707106781, To, T9);
Chris@82 101 Ci[WS(csi, 2)] = FMS(KP707106781, TE, TD);
Chris@82 102 }
Chris@82 103 {
Chris@82 104 E Tp, TB, Ts, TC, Tq, Tr;
Chris@82 105 Tp = FMA(KP866025403, T8, T5);
Chris@82 106 TB = FMA(KP866025403, TA, Tz);
Chris@82 107 Tq = FMA(KP866025403, Tm, Tl);
Chris@82 108 Tr = FMA(KP866025403, Tf, Te);
Chris@82 109 Ts = Tq - Tr;
Chris@82 110 TC = Tr + Tq;
Chris@82 111 Cr[WS(csr, 3)] = FNMS(KP707106781, Ts, Tp);
Chris@82 112 Ci[WS(csi, 5)] = FNMS(KP707106781, TC, TB);
Chris@82 113 Cr[WS(csr, 2)] = FMA(KP707106781, Ts, Tp);
Chris@82 114 Ci[0] = -(FMA(KP707106781, TC, TB));
Chris@82 115 }
Chris@82 116 }
Chris@82 117 }
Chris@82 118 }
Chris@82 119
Chris@82 120 static const kr2c_desc desc = { 12, "r2cfII_12", {21, 0, 24, 0}, &GENUS };
Chris@82 121
Chris@82 122 void X(codelet_r2cfII_12) (planner *p) {
Chris@82 123 X(kr2c_register) (p, r2cfII_12, &desc);
Chris@82 124 }
Chris@82 125
Chris@82 126 #else
Chris@82 127
Chris@82 128 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cfII_12 -dft-II -include rdft/scalar/r2cfII.h */
Chris@82 129
Chris@82 130 /*
Chris@82 131 * This function contains 43 FP additions, 12 FP multiplications,
Chris@82 132 * (or, 39 additions, 8 multiplications, 4 fused multiply/add),
Chris@82 133 * 28 stack variables, 5 constants, and 24 memory accesses
Chris@82 134 */
Chris@82 135 #include "rdft/scalar/r2cfII.h"
Chris@82 136
Chris@82 137 static void r2cfII_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@82 138 {
Chris@82 139 DK(KP353553390, +0.353553390593273762200422181052424519642417969);
Chris@82 140 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@82 141 DK(KP612372435, +0.612372435695794524549321018676472847991486870);
Chris@82 142 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 143 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 144 {
Chris@82 145 INT i;
Chris@82 146 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
Chris@82 147 E Tx, Tg, T4, Tz, Ty, Tj, TA, T9, Tm, Tl, Te, Tp, To, Tf, TE;
Chris@82 148 E TF;
Chris@82 149 {
Chris@82 150 E T1, T3, T2, Th, Ti;
Chris@82 151 T1 = R0[0];
Chris@82 152 T3 = R0[WS(rs, 2)];
Chris@82 153 T2 = R0[WS(rs, 4)];
Chris@82 154 Tx = KP866025403 * (T2 + T3);
Chris@82 155 Tg = FMA(KP500000000, T3 - T2, T1);
Chris@82 156 T4 = T1 + T2 - T3;
Chris@82 157 Tz = R0[WS(rs, 3)];
Chris@82 158 Th = R0[WS(rs, 5)];
Chris@82 159 Ti = R0[WS(rs, 1)];
Chris@82 160 Ty = Th + Ti;
Chris@82 161 Tj = KP866025403 * (Th - Ti);
Chris@82 162 TA = FMA(KP500000000, Ty, Tz);
Chris@82 163 }
Chris@82 164 {
Chris@82 165 E T5, T6, T7, T8;
Chris@82 166 T5 = R1[WS(rs, 1)];
Chris@82 167 T6 = R1[WS(rs, 5)];
Chris@82 168 T7 = R1[WS(rs, 3)];
Chris@82 169 T8 = T6 - T7;
Chris@82 170 T9 = T5 + T8;
Chris@82 171 Tm = KP612372435 * (T6 + T7);
Chris@82 172 Tl = FNMS(KP353553390, T8, KP707106781 * T5);
Chris@82 173 }
Chris@82 174 {
Chris@82 175 E Td, Ta, Tb, Tc;
Chris@82 176 Td = R1[WS(rs, 4)];
Chris@82 177 Ta = R1[WS(rs, 2)];
Chris@82 178 Tb = R1[0];
Chris@82 179 Tc = Ta - Tb;
Chris@82 180 Te = Tc - Td;
Chris@82 181 Tp = FMA(KP353553390, Tc, KP707106781 * Td);
Chris@82 182 To = KP612372435 * (Ta + Tb);
Chris@82 183 }
Chris@82 184 Tf = KP707106781 * (T9 + Te);
Chris@82 185 Cr[WS(csr, 1)] = T4 - Tf;
Chris@82 186 Cr[WS(csr, 4)] = T4 + Tf;
Chris@82 187 TE = KP707106781 * (Te - T9);
Chris@82 188 TF = Tz - Ty;
Chris@82 189 Ci[WS(csi, 4)] = TE - TF;
Chris@82 190 Ci[WS(csi, 1)] = TE + TF;
Chris@82 191 {
Chris@82 192 E Tk, TB, Tr, Tw, Tn, Tq;
Chris@82 193 Tk = Tg - Tj;
Chris@82 194 TB = Tx - TA;
Chris@82 195 Tn = Tl - Tm;
Chris@82 196 Tq = To - Tp;
Chris@82 197 Tr = Tn + Tq;
Chris@82 198 Tw = Tn - Tq;
Chris@82 199 Cr[WS(csr, 5)] = Tk - Tr;
Chris@82 200 Ci[WS(csi, 2)] = Tw + TB;
Chris@82 201 Cr[0] = Tk + Tr;
Chris@82 202 Ci[WS(csi, 3)] = Tw - TB;
Chris@82 203 }
Chris@82 204 {
Chris@82 205 E Ts, TD, Tv, TC, Tt, Tu;
Chris@82 206 Ts = Tg + Tj;
Chris@82 207 TD = Tx + TA;
Chris@82 208 Tt = To + Tp;
Chris@82 209 Tu = Tm + Tl;
Chris@82 210 Tv = Tt - Tu;
Chris@82 211 TC = Tu + Tt;
Chris@82 212 Cr[WS(csr, 3)] = Ts - Tv;
Chris@82 213 Ci[WS(csi, 5)] = TD - TC;
Chris@82 214 Cr[WS(csr, 2)] = Ts + Tv;
Chris@82 215 Ci[0] = -(TC + TD);
Chris@82 216 }
Chris@82 217 }
Chris@82 218 }
Chris@82 219 }
Chris@82 220
Chris@82 221 static const kr2c_desc desc = { 12, "r2cfII_12", {39, 8, 4, 0}, &GENUS };
Chris@82 222
Chris@82 223 void X(codelet_r2cfII_12) (planner *p) {
Chris@82 224 X(kr2c_register) (p, r2cfII_12, &desc);
Chris@82 225 }
Chris@82 226
Chris@82 227 #endif