annotate src/fftw-3.3.8/rdft/scalar/r2cb/r2cbIII_10.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:07:44 EDT 2018 */
Chris@82 23
Chris@82 24 #include "rdft/codelet-rdft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include rdft/scalar/r2cbIII.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 32 FP additions, 28 FP multiplications,
Chris@82 32 * (or, 14 additions, 10 multiplications, 18 fused multiply/add),
Chris@82 33 * 22 stack variables, 5 constants, and 20 memory accesses
Chris@82 34 */
Chris@82 35 #include "rdft/scalar/r2cbIII.h"
Chris@82 36
Chris@82 37 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@82 38 {
Chris@82 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@82 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@82 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@82 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@82 43 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@82 44 {
Chris@82 45 INT i;
Chris@82 46 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
Chris@82 47 E T1, To, T8, Tt, Ta, Ts, Te, Tq, Th, Tn;
Chris@82 48 T1 = Cr[WS(csr, 2)];
Chris@82 49 To = Ci[WS(csi, 2)];
Chris@82 50 {
Chris@82 51 E T2, T3, T4, T5, T6, T7;
Chris@82 52 T2 = Cr[WS(csr, 4)];
Chris@82 53 T3 = Cr[0];
Chris@82 54 T4 = T2 + T3;
Chris@82 55 T5 = Cr[WS(csr, 3)];
Chris@82 56 T6 = Cr[WS(csr, 1)];
Chris@82 57 T7 = T5 + T6;
Chris@82 58 T8 = T4 + T7;
Chris@82 59 Tt = T5 - T6;
Chris@82 60 Ta = T7 - T4;
Chris@82 61 Ts = T2 - T3;
Chris@82 62 }
Chris@82 63 {
Chris@82 64 E Tc, Td, Tl, Tf, Tg, Tm;
Chris@82 65 Tc = Ci[WS(csi, 3)];
Chris@82 66 Td = Ci[WS(csi, 1)];
Chris@82 67 Tl = Tc + Td;
Chris@82 68 Tf = Ci[WS(csi, 4)];
Chris@82 69 Tg = Ci[0];
Chris@82 70 Tm = Tf + Tg;
Chris@82 71 Te = Tc - Td;
Chris@82 72 Tq = Tl + Tm;
Chris@82 73 Th = Tf - Tg;
Chris@82 74 Tn = Tl - Tm;
Chris@82 75 }
Chris@82 76 R0[0] = KP2_000000000 * (T1 + T8);
Chris@82 77 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
Chris@82 78 {
Chris@82 79 E Ti, Tk, Tb, Tj, T9;
Chris@82 80 Ti = FMA(KP618033988, Th, Te);
Chris@82 81 Tk = FNMS(KP618033988, Te, Th);
Chris@82 82 T9 = FMS(KP250000000, T8, T1);
Chris@82 83 Tb = FNMS(KP559016994, Ta, T9);
Chris@82 84 Tj = FMA(KP559016994, Ta, T9);
Chris@82 85 R0[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Ti, Tb));
Chris@82 86 R0[WS(rs, 3)] = KP2_000000000 * (FMA(KP951056516, Tk, Tj));
Chris@82 87 R0[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Ti, Tb)));
Chris@82 88 R0[WS(rs, 2)] = -(KP2_000000000 * (FNMS(KP951056516, Tk, Tj)));
Chris@82 89 }
Chris@82 90 {
Chris@82 91 E Tu, Tw, Tr, Tv, Tp;
Chris@82 92 Tu = FMA(KP618033988, Tt, Ts);
Chris@82 93 Tw = FNMS(KP618033988, Ts, Tt);
Chris@82 94 Tp = FMA(KP250000000, Tn, To);
Chris@82 95 Tr = FMA(KP559016994, Tq, Tp);
Chris@82 96 Tv = FNMS(KP559016994, Tq, Tp);
Chris@82 97 R1[0] = -(KP2_000000000 * (FMA(KP951056516, Tu, Tr)));
Chris@82 98 R1[WS(rs, 3)] = KP2_000000000 * (FNMS(KP951056516, Tw, Tv));
Chris@82 99 R1[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Tu, Tr)));
Chris@82 100 R1[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Tw, Tv));
Chris@82 101 }
Chris@82 102 }
Chris@82 103 }
Chris@82 104 }
Chris@82 105
Chris@82 106 static const kr2c_desc desc = { 10, "r2cbIII_10", {14, 10, 18, 0}, &GENUS };
Chris@82 107
Chris@82 108 void X(codelet_r2cbIII_10) (planner *p) {
Chris@82 109 X(kr2c_register) (p, r2cbIII_10, &desc);
Chris@82 110 }
Chris@82 111
Chris@82 112 #else
Chris@82 113
Chris@82 114 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include rdft/scalar/r2cbIII.h */
Chris@82 115
Chris@82 116 /*
Chris@82 117 * This function contains 32 FP additions, 16 FP multiplications,
Chris@82 118 * (or, 26 additions, 10 multiplications, 6 fused multiply/add),
Chris@82 119 * 22 stack variables, 5 constants, and 20 memory accesses
Chris@82 120 */
Chris@82 121 #include "rdft/scalar/r2cbIII.h"
Chris@82 122
Chris@82 123 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@82 124 {
Chris@82 125 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 126 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
Chris@82 127 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
Chris@82 128 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@82 129 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
Chris@82 130 {
Chris@82 131 INT i;
Chris@82 132 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
Chris@82 133 E T1, To, T8, Tq, Ta, Tp, Te, Ts, Th, Tn;
Chris@82 134 T1 = Cr[WS(csr, 2)];
Chris@82 135 To = Ci[WS(csi, 2)];
Chris@82 136 {
Chris@82 137 E T2, T3, T4, T5, T6, T7;
Chris@82 138 T2 = Cr[WS(csr, 4)];
Chris@82 139 T3 = Cr[0];
Chris@82 140 T4 = T2 + T3;
Chris@82 141 T5 = Cr[WS(csr, 3)];
Chris@82 142 T6 = Cr[WS(csr, 1)];
Chris@82 143 T7 = T5 + T6;
Chris@82 144 T8 = T4 + T7;
Chris@82 145 Tq = T5 - T6;
Chris@82 146 Ta = KP1_118033988 * (T7 - T4);
Chris@82 147 Tp = T2 - T3;
Chris@82 148 }
Chris@82 149 {
Chris@82 150 E Tc, Td, Tm, Tf, Tg, Tl;
Chris@82 151 Tc = Ci[WS(csi, 4)];
Chris@82 152 Td = Ci[0];
Chris@82 153 Tm = Tc + Td;
Chris@82 154 Tf = Ci[WS(csi, 1)];
Chris@82 155 Tg = Ci[WS(csi, 3)];
Chris@82 156 Tl = Tg + Tf;
Chris@82 157 Te = Tc - Td;
Chris@82 158 Ts = KP1_118033988 * (Tl + Tm);
Chris@82 159 Th = Tf - Tg;
Chris@82 160 Tn = Tl - Tm;
Chris@82 161 }
Chris@82 162 R0[0] = KP2_000000000 * (T1 + T8);
Chris@82 163 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
Chris@82 164 {
Chris@82 165 E Ti, Tj, Tb, Tk, T9;
Chris@82 166 Ti = FNMS(KP1_902113032, Th, KP1_175570504 * Te);
Chris@82 167 Tj = FMA(KP1_175570504, Th, KP1_902113032 * Te);
Chris@82 168 T9 = FNMS(KP2_000000000, T1, KP500000000 * T8);
Chris@82 169 Tb = T9 - Ta;
Chris@82 170 Tk = T9 + Ta;
Chris@82 171 R0[WS(rs, 1)] = Tb + Ti;
Chris@82 172 R0[WS(rs, 3)] = Tk + Tj;
Chris@82 173 R0[WS(rs, 4)] = Ti - Tb;
Chris@82 174 R0[WS(rs, 2)] = Tj - Tk;
Chris@82 175 }
Chris@82 176 {
Chris@82 177 E Tr, Tv, Tu, Tw, Tt;
Chris@82 178 Tr = FMA(KP1_902113032, Tp, KP1_175570504 * Tq);
Chris@82 179 Tv = FNMS(KP1_175570504, Tp, KP1_902113032 * Tq);
Chris@82 180 Tt = FMA(KP500000000, Tn, KP2_000000000 * To);
Chris@82 181 Tu = Ts + Tt;
Chris@82 182 Tw = Tt - Ts;
Chris@82 183 R1[0] = -(Tr + Tu);
Chris@82 184 R1[WS(rs, 3)] = Tw - Tv;
Chris@82 185 R1[WS(rs, 4)] = Tr - Tu;
Chris@82 186 R1[WS(rs, 1)] = Tv + Tw;
Chris@82 187 }
Chris@82 188 }
Chris@82 189 }
Chris@82 190 }
Chris@82 191
Chris@82 192 static const kr2c_desc desc = { 10, "r2cbIII_10", {26, 10, 6, 0}, &GENUS };
Chris@82 193
Chris@82 194 void X(codelet_r2cbIII_10) (planner *p) {
Chris@82 195 X(kr2c_register) (p, r2cbIII_10, &desc);
Chris@82 196 }
Chris@82 197
Chris@82 198 #endif