annotate src/fftw-3.3.8/doc/html/Multi_002ddimensional-Transforms.html @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
rev   line source
Chris@82 1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
Chris@82 2 <html>
Chris@82 3 <!-- This manual is for FFTW
Chris@82 4 (version 3.3.8, 24 May 2018).
Chris@82 5
Chris@82 6 Copyright (C) 2003 Matteo Frigo.
Chris@82 7
Chris@82 8 Copyright (C) 2003 Massachusetts Institute of Technology.
Chris@82 9
Chris@82 10 Permission is granted to make and distribute verbatim copies of this
Chris@82 11 manual provided the copyright notice and this permission notice are
Chris@82 12 preserved on all copies.
Chris@82 13
Chris@82 14 Permission is granted to copy and distribute modified versions of this
Chris@82 15 manual under the conditions for verbatim copying, provided that the
Chris@82 16 entire resulting derived work is distributed under the terms of a
Chris@82 17 permission notice identical to this one.
Chris@82 18
Chris@82 19 Permission is granted to copy and distribute translations of this manual
Chris@82 20 into another language, under the above conditions for modified versions,
Chris@82 21 except that this permission notice may be stated in a translation
Chris@82 22 approved by the Free Software Foundation. -->
Chris@82 23 <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ -->
Chris@82 24 <head>
Chris@82 25 <title>FFTW 3.3.8: Multi-dimensional Transforms</title>
Chris@82 26
Chris@82 27 <meta name="description" content="FFTW 3.3.8: Multi-dimensional Transforms">
Chris@82 28 <meta name="keywords" content="FFTW 3.3.8: Multi-dimensional Transforms">
Chris@82 29 <meta name="resource-type" content="document">
Chris@82 30 <meta name="distribution" content="global">
Chris@82 31 <meta name="Generator" content="makeinfo">
Chris@82 32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
Chris@82 33 <link href="index.html#Top" rel="start" title="Top">
Chris@82 34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
Chris@82 35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
Chris@82 36 <link href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" rel="up" title="What FFTW Really Computes">
Chris@82 37 <link href="Multi_002dthreaded-FFTW.html#Multi_002dthreaded-FFTW" rel="next" title="Multi-threaded FFTW">
Chris@82 38 <link href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" rel="prev" title="1d Discrete Hartley Transforms (DHTs)">
Chris@82 39 <style type="text/css">
Chris@82 40 <!--
Chris@82 41 a.summary-letter {text-decoration: none}
Chris@82 42 blockquote.indentedblock {margin-right: 0em}
Chris@82 43 blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
Chris@82 44 blockquote.smallquotation {font-size: smaller}
Chris@82 45 div.display {margin-left: 3.2em}
Chris@82 46 div.example {margin-left: 3.2em}
Chris@82 47 div.lisp {margin-left: 3.2em}
Chris@82 48 div.smalldisplay {margin-left: 3.2em}
Chris@82 49 div.smallexample {margin-left: 3.2em}
Chris@82 50 div.smalllisp {margin-left: 3.2em}
Chris@82 51 kbd {font-style: oblique}
Chris@82 52 pre.display {font-family: inherit}
Chris@82 53 pre.format {font-family: inherit}
Chris@82 54 pre.menu-comment {font-family: serif}
Chris@82 55 pre.menu-preformatted {font-family: serif}
Chris@82 56 pre.smalldisplay {font-family: inherit; font-size: smaller}
Chris@82 57 pre.smallexample {font-size: smaller}
Chris@82 58 pre.smallformat {font-family: inherit; font-size: smaller}
Chris@82 59 pre.smalllisp {font-size: smaller}
Chris@82 60 span.nolinebreak {white-space: nowrap}
Chris@82 61 span.roman {font-family: initial; font-weight: normal}
Chris@82 62 span.sansserif {font-family: sans-serif; font-weight: normal}
Chris@82 63 ul.no-bullet {list-style: none}
Chris@82 64 -->
Chris@82 65 </style>
Chris@82 66
Chris@82 67
Chris@82 68 </head>
Chris@82 69
Chris@82 70 <body lang="en">
Chris@82 71 <a name="Multi_002ddimensional-Transforms"></a>
Chris@82 72 <div class="header">
Chris@82 73 <p>
Chris@82 74 Previous: <a href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" accesskey="p" rel="prev">1d Discrete Hartley Transforms (DHTs)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
Chris@82 75 </div>
Chris@82 76 <hr>
Chris@82 77 <a name="Multi_002ddimensional-Transforms-1"></a>
Chris@82 78 <h4 class="subsection">4.8.6 Multi-dimensional Transforms</h4>
Chris@82 79
Chris@82 80 <p>The multi-dimensional transforms of FFTW, in general, compute simply the
Chris@82 81 separable product of the given 1d transform along each dimension of the
Chris@82 82 array. Since each of these transforms is unnormalized, computing the
Chris@82 83 forward followed by the backward/inverse multi-dimensional transform
Chris@82 84 will result in the original array scaled by the product of the
Chris@82 85 normalization factors for each dimension (e.g. the product of the
Chris@82 86 dimension sizes, for a multi-dimensional DFT).
Chris@82 87 </p>
Chris@82 88
Chris@82 89 <a name="index-r2c-3"></a>
Chris@82 90 <p>The definition of FFTW&rsquo;s multi-dimensional DFT of real data (r2c)
Chris@82 91 deserves special attention. In this case, we logically compute the full
Chris@82 92 multi-dimensional DFT of the input data; since the input data are purely
Chris@82 93 real, the output data have the Hermitian symmetry and therefore only one
Chris@82 94 non-redundant half need be stored. More specifically, for an n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub>
Chris@82 95 multi-dimensional real-input DFT, the full (logical) complex output array
Chris@82 96 <i>Y</i>[<i>k</i><sub>0</sub>, <i>k</i><sub>1</sub>, ...,
Chris@82 97 <i>k</i><sub><i>d-1</i></sub>]
Chris@82 98 has the symmetry:
Chris@82 99 <i>Y</i>[<i>k</i><sub>0</sub>, <i>k</i><sub>1</sub>, ...,
Chris@82 100 <i>k</i><sub><i>d-1</i></sub>] = <i>Y</i>[<i>n</i><sub>0</sub> -
Chris@82 101 <i>k</i><sub>0</sub>, <i>n</i><sub>1</sub> - <i>k</i><sub>1</sub>, ...,
Chris@82 102 <i>n</i><sub><i>d-1</i></sub> - <i>k</i><sub><i>d-1</i></sub>]<sup>*</sup>
Chris@82 103 (where each dimension is periodic). Because of this symmetry, we only
Chris@82 104 store the
Chris@82 105 <i>k</i><sub><i>d-1</i></sub> = 0...<i>n</i><sub><i>d-1</i></sub>/2+1
Chris@82 106 elements of the <em>last</em> dimension (division by <em>2</em> is rounded
Chris@82 107 down). (We could instead have cut any other dimension in half, but the
Chris@82 108 last dimension proved computationally convenient.) This results in the
Chris@82 109 peculiar array format described in more detail by <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>.
Chris@82 110 </p>
Chris@82 111 <p>The multi-dimensional c2r transform is simply the unnormalized inverse
Chris@82 112 of the r2c transform. i.e. it is the same as FFTW&rsquo;s complex backward
Chris@82 113 multi-dimensional DFT, operating on a Hermitian input array in the
Chris@82 114 peculiar format mentioned above and outputting a real array (since the
Chris@82 115 DFT output is purely real).
Chris@82 116 </p>
Chris@82 117 <p>We should remind the user that the separable product of 1d transforms
Chris@82 118 along each dimension, as computed by FFTW, is not always the same thing
Chris@82 119 as the usual multi-dimensional transform. A multi-dimensional
Chris@82 120 <code>R2HC</code> (or <code>HC2R</code>) transform is not identical to the
Chris@82 121 multi-dimensional DFT, requiring some post-processing to combine the
Chris@82 122 requisite real and imaginary parts, as was described in <a href="The-Halfcomplex_002dformat-DFT.html#The-Halfcomplex_002dformat-DFT">The Halfcomplex-format DFT</a>. Likewise, FFTW&rsquo;s multidimensional
Chris@82 123 <code>FFTW_DHT</code> r2r transform is not the same thing as the logical
Chris@82 124 multi-dimensional discrete Hartley transform defined in the literature,
Chris@82 125 as discussed in <a href="The-Discrete-Hartley-Transform.html#The-Discrete-Hartley-Transform">The Discrete Hartley Transform</a>.
Chris@82 126 </p>
Chris@82 127 <hr>
Chris@82 128 <div class="header">
Chris@82 129 <p>
Chris@82 130 Previous: <a href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" accesskey="p" rel="prev">1d Discrete Hartley Transforms (DHTs)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
Chris@82 131 </div>
Chris@82 132
Chris@82 133
Chris@82 134
Chris@82 135 </body>
Chris@82 136 </html>