annotate src/fftw-3.3.8/dft/simd/common/t3fv_8.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:05:51 EDT 2018 */
Chris@82 23
Chris@82 24 #include "dft/codelet-dft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include dft/simd/t3f.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 37 FP additions, 32 FP multiplications,
Chris@82 32 * (or, 27 additions, 22 multiplications, 10 fused multiply/add),
Chris@82 33 * 31 stack variables, 1 constants, and 16 memory accesses
Chris@82 34 */
Chris@82 35 #include "dft/simd/t3f.h"
Chris@82 36
Chris@82 37 static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 38 {
Chris@82 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@82 40 {
Chris@82 41 INT m;
Chris@82 42 R *x;
Chris@82 43 x = ri;
Chris@82 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@82 45 V T2, T3, Ta, T4, Tb, Tc, Tp;
Chris@82 46 T2 = LDW(&(W[0]));
Chris@82 47 T3 = LDW(&(W[TWVL * 2]));
Chris@82 48 Ta = VZMULJ(T2, T3);
Chris@82 49 T4 = VZMUL(T2, T3);
Chris@82 50 Tb = LDW(&(W[TWVL * 4]));
Chris@82 51 Tc = VZMULJ(Ta, Tb);
Chris@82 52 Tp = VZMULJ(T2, Tb);
Chris@82 53 {
Chris@82 54 V T7, Tx, Ts, Ty, Tf, TA, Tk, TB, T1, T6, T5;
Chris@82 55 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@82 56 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@82 57 T6 = VZMULJ(T4, T5);
Chris@82 58 T7 = VSUB(T1, T6);
Chris@82 59 Tx = VADD(T1, T6);
Chris@82 60 {
Chris@82 61 V To, Tr, Tn, Tq;
Chris@82 62 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@82 63 To = VZMULJ(Ta, Tn);
Chris@82 64 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@82 65 Tr = VZMULJ(Tp, Tq);
Chris@82 66 Ts = VSUB(To, Tr);
Chris@82 67 Ty = VADD(To, Tr);
Chris@82 68 }
Chris@82 69 {
Chris@82 70 V T9, Te, T8, Td;
Chris@82 71 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@82 72 T9 = VZMULJ(T2, T8);
Chris@82 73 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@82 74 Te = VZMULJ(Tc, Td);
Chris@82 75 Tf = VSUB(T9, Te);
Chris@82 76 TA = VADD(T9, Te);
Chris@82 77 }
Chris@82 78 {
Chris@82 79 V Th, Tj, Tg, Ti;
Chris@82 80 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@82 81 Th = VZMULJ(Tb, Tg);
Chris@82 82 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@82 83 Tj = VZMULJ(T3, Ti);
Chris@82 84 Tk = VSUB(Th, Tj);
Chris@82 85 TB = VADD(Th, Tj);
Chris@82 86 }
Chris@82 87 {
Chris@82 88 V Tz, TC, TD, TE;
Chris@82 89 Tz = VADD(Tx, Ty);
Chris@82 90 TC = VADD(TA, TB);
Chris@82 91 ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
Chris@82 92 ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
Chris@82 93 TD = VSUB(Tx, Ty);
Chris@82 94 TE = VSUB(TB, TA);
Chris@82 95 ST(&(x[WS(rs, 6)]), VFNMSI(TE, TD), ms, &(x[0]));
Chris@82 96 ST(&(x[WS(rs, 2)]), VFMAI(TE, TD), ms, &(x[0]));
Chris@82 97 {
Chris@82 98 V Tm, Tv, Tu, Tw, Tl, Tt;
Chris@82 99 Tl = VADD(Tf, Tk);
Chris@82 100 Tm = VFMA(LDK(KP707106781), Tl, T7);
Chris@82 101 Tv = VFNMS(LDK(KP707106781), Tl, T7);
Chris@82 102 Tt = VSUB(Tk, Tf);
Chris@82 103 Tu = VFNMS(LDK(KP707106781), Tt, Ts);
Chris@82 104 Tw = VFMA(LDK(KP707106781), Tt, Ts);
Chris@82 105 ST(&(x[WS(rs, 1)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)]));
Chris@82 106 ST(&(x[WS(rs, 3)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@82 107 ST(&(x[WS(rs, 7)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)]));
Chris@82 108 ST(&(x[WS(rs, 5)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@82 109 }
Chris@82 110 }
Chris@82 111 }
Chris@82 112 }
Chris@82 113 }
Chris@82 114 VLEAVE();
Chris@82 115 }
Chris@82 116
Chris@82 117 static const tw_instr twinstr[] = {
Chris@82 118 VTW(0, 1),
Chris@82 119 VTW(0, 3),
Chris@82 120 VTW(0, 7),
Chris@82 121 {TW_NEXT, VL, 0}
Chris@82 122 };
Chris@82 123
Chris@82 124 static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {27, 22, 10, 0}, 0, 0, 0 };
Chris@82 125
Chris@82 126 void XSIMD(codelet_t3fv_8) (planner *p) {
Chris@82 127 X(kdft_dit_register) (p, t3fv_8, &desc);
Chris@82 128 }
Chris@82 129 #else
Chris@82 130
Chris@82 131 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include dft/simd/t3f.h */
Chris@82 132
Chris@82 133 /*
Chris@82 134 * This function contains 37 FP additions, 24 FP multiplications,
Chris@82 135 * (or, 37 additions, 24 multiplications, 0 fused multiply/add),
Chris@82 136 * 31 stack variables, 1 constants, and 16 memory accesses
Chris@82 137 */
Chris@82 138 #include "dft/simd/t3f.h"
Chris@82 139
Chris@82 140 static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 141 {
Chris@82 142 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@82 143 {
Chris@82 144 INT m;
Chris@82 145 R *x;
Chris@82 146 x = ri;
Chris@82 147 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@82 148 V T2, T3, Ta, T4, Tb, Tc, Tq;
Chris@82 149 T2 = LDW(&(W[0]));
Chris@82 150 T3 = LDW(&(W[TWVL * 2]));
Chris@82 151 Ta = VZMULJ(T2, T3);
Chris@82 152 T4 = VZMUL(T2, T3);
Chris@82 153 Tb = LDW(&(W[TWVL * 4]));
Chris@82 154 Tc = VZMULJ(Ta, Tb);
Chris@82 155 Tq = VZMULJ(T2, Tb);
Chris@82 156 {
Chris@82 157 V T7, Tx, Tt, Ty, Tf, TA, Tk, TB, T1, T6, T5;
Chris@82 158 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@82 159 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@82 160 T6 = VZMULJ(T4, T5);
Chris@82 161 T7 = VSUB(T1, T6);
Chris@82 162 Tx = VADD(T1, T6);
Chris@82 163 {
Chris@82 164 V Tp, Ts, To, Tr;
Chris@82 165 To = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@82 166 Tp = VZMULJ(Ta, To);
Chris@82 167 Tr = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@82 168 Ts = VZMULJ(Tq, Tr);
Chris@82 169 Tt = VSUB(Tp, Ts);
Chris@82 170 Ty = VADD(Tp, Ts);
Chris@82 171 }
Chris@82 172 {
Chris@82 173 V T9, Te, T8, Td;
Chris@82 174 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@82 175 T9 = VZMULJ(T2, T8);
Chris@82 176 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@82 177 Te = VZMULJ(Tc, Td);
Chris@82 178 Tf = VSUB(T9, Te);
Chris@82 179 TA = VADD(T9, Te);
Chris@82 180 }
Chris@82 181 {
Chris@82 182 V Th, Tj, Tg, Ti;
Chris@82 183 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@82 184 Th = VZMULJ(Tb, Tg);
Chris@82 185 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@82 186 Tj = VZMULJ(T3, Ti);
Chris@82 187 Tk = VSUB(Th, Tj);
Chris@82 188 TB = VADD(Th, Tj);
Chris@82 189 }
Chris@82 190 {
Chris@82 191 V Tz, TC, TD, TE;
Chris@82 192 Tz = VADD(Tx, Ty);
Chris@82 193 TC = VADD(TA, TB);
Chris@82 194 ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
Chris@82 195 ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
Chris@82 196 TD = VSUB(Tx, Ty);
Chris@82 197 TE = VBYI(VSUB(TB, TA));
Chris@82 198 ST(&(x[WS(rs, 6)]), VSUB(TD, TE), ms, &(x[0]));
Chris@82 199 ST(&(x[WS(rs, 2)]), VADD(TD, TE), ms, &(x[0]));
Chris@82 200 {
Chris@82 201 V Tm, Tv, Tu, Tw, Tl, Tn;
Chris@82 202 Tl = VMUL(LDK(KP707106781), VADD(Tf, Tk));
Chris@82 203 Tm = VADD(T7, Tl);
Chris@82 204 Tv = VSUB(T7, Tl);
Chris@82 205 Tn = VMUL(LDK(KP707106781), VSUB(Tk, Tf));
Chris@82 206 Tu = VBYI(VSUB(Tn, Tt));
Chris@82 207 Tw = VBYI(VADD(Tt, Tn));
Chris@82 208 ST(&(x[WS(rs, 7)]), VSUB(Tm, Tu), ms, &(x[WS(rs, 1)]));
Chris@82 209 ST(&(x[WS(rs, 3)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
Chris@82 210 ST(&(x[WS(rs, 1)]), VADD(Tm, Tu), ms, &(x[WS(rs, 1)]));
Chris@82 211 ST(&(x[WS(rs, 5)]), VSUB(Tv, Tw), ms, &(x[WS(rs, 1)]));
Chris@82 212 }
Chris@82 213 }
Chris@82 214 }
Chris@82 215 }
Chris@82 216 }
Chris@82 217 VLEAVE();
Chris@82 218 }
Chris@82 219
Chris@82 220 static const tw_instr twinstr[] = {
Chris@82 221 VTW(0, 1),
Chris@82 222 VTW(0, 3),
Chris@82 223 VTW(0, 7),
Chris@82 224 {TW_NEXT, VL, 0}
Chris@82 225 };
Chris@82 226
Chris@82 227 static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {37, 24, 0, 0}, 0, 0, 0 };
Chris@82 228
Chris@82 229 void XSIMD(codelet_t3fv_8) (planner *p) {
Chris@82 230 X(kdft_dit_register) (p, t3fv_8, &desc);
Chris@82 231 }
Chris@82 232 #endif