annotate src/fftw-3.3.8/dft/simd/common/t3bv_8.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:06:06 EDT 2018 */
Chris@82 23
Chris@82 24 #include "dft/codelet-dft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include dft/simd/t3b.h -sign 1 */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 37 FP additions, 32 FP multiplications,
Chris@82 32 * (or, 27 additions, 22 multiplications, 10 fused multiply/add),
Chris@82 33 * 31 stack variables, 1 constants, and 16 memory accesses
Chris@82 34 */
Chris@82 35 #include "dft/simd/t3b.h"
Chris@82 36
Chris@82 37 static void t3bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 38 {
Chris@82 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@82 40 {
Chris@82 41 INT m;
Chris@82 42 R *x;
Chris@82 43 x = ii;
Chris@82 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@82 45 V T2, T3, Ta, T4, Tb, Tc, Tp;
Chris@82 46 T2 = LDW(&(W[0]));
Chris@82 47 T3 = LDW(&(W[TWVL * 2]));
Chris@82 48 Ta = VZMULJ(T2, T3);
Chris@82 49 T4 = VZMUL(T2, T3);
Chris@82 50 Tb = LDW(&(W[TWVL * 4]));
Chris@82 51 Tc = VZMULJ(Ta, Tb);
Chris@82 52 Tp = VZMULJ(T2, Tb);
Chris@82 53 {
Chris@82 54 V T7, Tx, Ts, Ty, Tf, TA, Tk, TB, T1, T6, T5;
Chris@82 55 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@82 56 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@82 57 T6 = VZMUL(T4, T5);
Chris@82 58 T7 = VSUB(T1, T6);
Chris@82 59 Tx = VADD(T1, T6);
Chris@82 60 {
Chris@82 61 V To, Tr, Tn, Tq;
Chris@82 62 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@82 63 To = VZMUL(Ta, Tn);
Chris@82 64 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@82 65 Tr = VZMUL(Tp, Tq);
Chris@82 66 Ts = VSUB(To, Tr);
Chris@82 67 Ty = VADD(To, Tr);
Chris@82 68 }
Chris@82 69 {
Chris@82 70 V T9, Te, T8, Td;
Chris@82 71 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@82 72 T9 = VZMUL(T2, T8);
Chris@82 73 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@82 74 Te = VZMUL(Tc, Td);
Chris@82 75 Tf = VSUB(T9, Te);
Chris@82 76 TA = VADD(T9, Te);
Chris@82 77 }
Chris@82 78 {
Chris@82 79 V Th, Tj, Tg, Ti;
Chris@82 80 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@82 81 Th = VZMUL(Tb, Tg);
Chris@82 82 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@82 83 Tj = VZMUL(T3, Ti);
Chris@82 84 Tk = VSUB(Th, Tj);
Chris@82 85 TB = VADD(Th, Tj);
Chris@82 86 }
Chris@82 87 {
Chris@82 88 V Tz, TC, TD, TE;
Chris@82 89 Tz = VSUB(Tx, Ty);
Chris@82 90 TC = VSUB(TA, TB);
Chris@82 91 ST(&(x[WS(rs, 6)]), VFNMSI(TC, Tz), ms, &(x[0]));
Chris@82 92 ST(&(x[WS(rs, 2)]), VFMAI(TC, Tz), ms, &(x[0]));
Chris@82 93 TD = VADD(Tx, Ty);
Chris@82 94 TE = VADD(TA, TB);
Chris@82 95 ST(&(x[WS(rs, 4)]), VSUB(TD, TE), ms, &(x[0]));
Chris@82 96 ST(&(x[0]), VADD(TD, TE), ms, &(x[0]));
Chris@82 97 {
Chris@82 98 V Tm, Tv, Tu, Tw, Tl, Tt;
Chris@82 99 Tl = VADD(Tf, Tk);
Chris@82 100 Tm = VFNMS(LDK(KP707106781), Tl, T7);
Chris@82 101 Tv = VFMA(LDK(KP707106781), Tl, T7);
Chris@82 102 Tt = VSUB(Tf, Tk);
Chris@82 103 Tu = VFNMS(LDK(KP707106781), Tt, Ts);
Chris@82 104 Tw = VFMA(LDK(KP707106781), Tt, Ts);
Chris@82 105 ST(&(x[WS(rs, 3)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)]));
Chris@82 106 ST(&(x[WS(rs, 7)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@82 107 ST(&(x[WS(rs, 5)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)]));
Chris@82 108 ST(&(x[WS(rs, 1)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@82 109 }
Chris@82 110 }
Chris@82 111 }
Chris@82 112 }
Chris@82 113 }
Chris@82 114 VLEAVE();
Chris@82 115 }
Chris@82 116
Chris@82 117 static const tw_instr twinstr[] = {
Chris@82 118 VTW(0, 1),
Chris@82 119 VTW(0, 3),
Chris@82 120 VTW(0, 7),
Chris@82 121 {TW_NEXT, VL, 0}
Chris@82 122 };
Chris@82 123
Chris@82 124 static const ct_desc desc = { 8, XSIMD_STRING("t3bv_8"), twinstr, &GENUS, {27, 22, 10, 0}, 0, 0, 0 };
Chris@82 125
Chris@82 126 void XSIMD(codelet_t3bv_8) (planner *p) {
Chris@82 127 X(kdft_dit_register) (p, t3bv_8, &desc);
Chris@82 128 }
Chris@82 129 #else
Chris@82 130
Chris@82 131 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include dft/simd/t3b.h -sign 1 */
Chris@82 132
Chris@82 133 /*
Chris@82 134 * This function contains 37 FP additions, 24 FP multiplications,
Chris@82 135 * (or, 37 additions, 24 multiplications, 0 fused multiply/add),
Chris@82 136 * 31 stack variables, 1 constants, and 16 memory accesses
Chris@82 137 */
Chris@82 138 #include "dft/simd/t3b.h"
Chris@82 139
Chris@82 140 static void t3bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 141 {
Chris@82 142 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@82 143 {
Chris@82 144 INT m;
Chris@82 145 R *x;
Chris@82 146 x = ii;
Chris@82 147 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@82 148 V T1, T4, T5, Tp, T6, T7, Tj;
Chris@82 149 T1 = LDW(&(W[0]));
Chris@82 150 T4 = LDW(&(W[TWVL * 2]));
Chris@82 151 T5 = VZMULJ(T1, T4);
Chris@82 152 Tp = VZMUL(T1, T4);
Chris@82 153 T6 = LDW(&(W[TWVL * 4]));
Chris@82 154 T7 = VZMULJ(T5, T6);
Chris@82 155 Tj = VZMULJ(T1, T6);
Chris@82 156 {
Chris@82 157 V Ts, Tx, Tm, Ty, Ta, TA, Tf, TB, To, Tr, Tq;
Chris@82 158 To = LD(&(x[0]), ms, &(x[0]));
Chris@82 159 Tq = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@82 160 Tr = VZMUL(Tp, Tq);
Chris@82 161 Ts = VSUB(To, Tr);
Chris@82 162 Tx = VADD(To, Tr);
Chris@82 163 {
Chris@82 164 V Ti, Tl, Th, Tk;
Chris@82 165 Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@82 166 Ti = VZMUL(T5, Th);
Chris@82 167 Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@82 168 Tl = VZMUL(Tj, Tk);
Chris@82 169 Tm = VSUB(Ti, Tl);
Chris@82 170 Ty = VADD(Ti, Tl);
Chris@82 171 }
Chris@82 172 {
Chris@82 173 V T3, T9, T2, T8;
Chris@82 174 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@82 175 T3 = VZMUL(T1, T2);
Chris@82 176 T8 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@82 177 T9 = VZMUL(T7, T8);
Chris@82 178 Ta = VSUB(T3, T9);
Chris@82 179 TA = VADD(T3, T9);
Chris@82 180 }
Chris@82 181 {
Chris@82 182 V Tc, Te, Tb, Td;
Chris@82 183 Tb = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@82 184 Tc = VZMUL(T6, Tb);
Chris@82 185 Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@82 186 Te = VZMUL(T4, Td);
Chris@82 187 Tf = VSUB(Tc, Te);
Chris@82 188 TB = VADD(Tc, Te);
Chris@82 189 }
Chris@82 190 {
Chris@82 191 V Tz, TC, TD, TE;
Chris@82 192 Tz = VSUB(Tx, Ty);
Chris@82 193 TC = VBYI(VSUB(TA, TB));
Chris@82 194 ST(&(x[WS(rs, 6)]), VSUB(Tz, TC), ms, &(x[0]));
Chris@82 195 ST(&(x[WS(rs, 2)]), VADD(Tz, TC), ms, &(x[0]));
Chris@82 196 TD = VADD(Tx, Ty);
Chris@82 197 TE = VADD(TA, TB);
Chris@82 198 ST(&(x[WS(rs, 4)]), VSUB(TD, TE), ms, &(x[0]));
Chris@82 199 ST(&(x[0]), VADD(TD, TE), ms, &(x[0]));
Chris@82 200 {
Chris@82 201 V Tn, Tv, Tu, Tw, Tg, Tt;
Chris@82 202 Tg = VMUL(LDK(KP707106781), VSUB(Ta, Tf));
Chris@82 203 Tn = VBYI(VSUB(Tg, Tm));
Chris@82 204 Tv = VBYI(VADD(Tm, Tg));
Chris@82 205 Tt = VMUL(LDK(KP707106781), VADD(Ta, Tf));
Chris@82 206 Tu = VSUB(Ts, Tt);
Chris@82 207 Tw = VADD(Ts, Tt);
Chris@82 208 ST(&(x[WS(rs, 3)]), VADD(Tn, Tu), ms, &(x[WS(rs, 1)]));
Chris@82 209 ST(&(x[WS(rs, 7)]), VSUB(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@82 210 ST(&(x[WS(rs, 5)]), VSUB(Tu, Tn), ms, &(x[WS(rs, 1)]));
Chris@82 211 ST(&(x[WS(rs, 1)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
Chris@82 212 }
Chris@82 213 }
Chris@82 214 }
Chris@82 215 }
Chris@82 216 }
Chris@82 217 VLEAVE();
Chris@82 218 }
Chris@82 219
Chris@82 220 static const tw_instr twinstr[] = {
Chris@82 221 VTW(0, 1),
Chris@82 222 VTW(0, 3),
Chris@82 223 VTW(0, 7),
Chris@82 224 {TW_NEXT, VL, 0}
Chris@82 225 };
Chris@82 226
Chris@82 227 static const ct_desc desc = { 8, XSIMD_STRING("t3bv_8"), twinstr, &GENUS, {37, 24, 0, 0}, 0, 0, 0 };
Chris@82 228
Chris@82 229 void XSIMD(codelet_t3bv_8) (planner *p) {
Chris@82 230 X(kdft_dit_register) (p, t3bv_8, &desc);
Chris@82 231 }
Chris@82 232 #endif