annotate src/fftw-3.3.8/dft/simd/common/n1bv_8.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:04:55 EDT 2018 */
Chris@82 23
Chris@82 24 #include "dft/codelet-dft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n1bv_8 -include dft/simd/n1b.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 26 FP additions, 10 FP multiplications,
Chris@82 32 * (or, 16 additions, 0 multiplications, 10 fused multiply/add),
Chris@82 33 * 22 stack variables, 1 constants, and 16 memory accesses
Chris@82 34 */
Chris@82 35 #include "dft/simd/n1b.h"
Chris@82 36
Chris@82 37 static void n1bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@82 38 {
Chris@82 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@82 40 {
Chris@82 41 INT i;
Chris@82 42 const R *xi;
Chris@82 43 R *xo;
Chris@82 44 xi = ii;
Chris@82 45 xo = io;
Chris@82 46 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
Chris@82 47 V T3, Tj, Te, Tk, Ta, Tn, Tf, Tm;
Chris@82 48 {
Chris@82 49 V T1, T2, Tc, Td;
Chris@82 50 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@82 51 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@82 52 T3 = VSUB(T1, T2);
Chris@82 53 Tj = VADD(T1, T2);
Chris@82 54 Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@82 55 Td = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@82 56 Te = VSUB(Tc, Td);
Chris@82 57 Tk = VADD(Tc, Td);
Chris@82 58 {
Chris@82 59 V T4, T5, T6, T7, T8, T9;
Chris@82 60 T4 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@82 61 T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@82 62 T6 = VSUB(T4, T5);
Chris@82 63 T7 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@82 64 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@82 65 T9 = VSUB(T7, T8);
Chris@82 66 Ta = VADD(T6, T9);
Chris@82 67 Tn = VADD(T7, T8);
Chris@82 68 Tf = VSUB(T6, T9);
Chris@82 69 Tm = VADD(T4, T5);
Chris@82 70 }
Chris@82 71 }
Chris@82 72 {
Chris@82 73 V Tb, Tg, Tp, Tq;
Chris@82 74 Tb = VFNMS(LDK(KP707106781), Ta, T3);
Chris@82 75 Tg = VFNMS(LDK(KP707106781), Tf, Te);
Chris@82 76 ST(&(xo[WS(os, 3)]), VFNMSI(Tg, Tb), ovs, &(xo[WS(os, 1)]));
Chris@82 77 ST(&(xo[WS(os, 5)]), VFMAI(Tg, Tb), ovs, &(xo[WS(os, 1)]));
Chris@82 78 Tp = VADD(Tj, Tk);
Chris@82 79 Tq = VADD(Tm, Tn);
Chris@82 80 ST(&(xo[WS(os, 4)]), VSUB(Tp, Tq), ovs, &(xo[0]));
Chris@82 81 ST(&(xo[0]), VADD(Tp, Tq), ovs, &(xo[0]));
Chris@82 82 }
Chris@82 83 {
Chris@82 84 V Th, Ti, Tl, To;
Chris@82 85 Th = VFMA(LDK(KP707106781), Ta, T3);
Chris@82 86 Ti = VFMA(LDK(KP707106781), Tf, Te);
Chris@82 87 ST(&(xo[WS(os, 1)]), VFMAI(Ti, Th), ovs, &(xo[WS(os, 1)]));
Chris@82 88 ST(&(xo[WS(os, 7)]), VFNMSI(Ti, Th), ovs, &(xo[WS(os, 1)]));
Chris@82 89 Tl = VSUB(Tj, Tk);
Chris@82 90 To = VSUB(Tm, Tn);
Chris@82 91 ST(&(xo[WS(os, 6)]), VFNMSI(To, Tl), ovs, &(xo[0]));
Chris@82 92 ST(&(xo[WS(os, 2)]), VFMAI(To, Tl), ovs, &(xo[0]));
Chris@82 93 }
Chris@82 94 }
Chris@82 95 }
Chris@82 96 VLEAVE();
Chris@82 97 }
Chris@82 98
Chris@82 99 static const kdft_desc desc = { 8, XSIMD_STRING("n1bv_8"), {16, 0, 10, 0}, &GENUS, 0, 0, 0, 0 };
Chris@82 100
Chris@82 101 void XSIMD(codelet_n1bv_8) (planner *p) {
Chris@82 102 X(kdft_register) (p, n1bv_8, &desc);
Chris@82 103 }
Chris@82 104
Chris@82 105 #else
Chris@82 106
Chris@82 107 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n1bv_8 -include dft/simd/n1b.h */
Chris@82 108
Chris@82 109 /*
Chris@82 110 * This function contains 26 FP additions, 2 FP multiplications,
Chris@82 111 * (or, 26 additions, 2 multiplications, 0 fused multiply/add),
Chris@82 112 * 22 stack variables, 1 constants, and 16 memory accesses
Chris@82 113 */
Chris@82 114 #include "dft/simd/n1b.h"
Chris@82 115
Chris@82 116 static void n1bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@82 117 {
Chris@82 118 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@82 119 {
Chris@82 120 INT i;
Chris@82 121 const R *xi;
Chris@82 122 R *xo;
Chris@82 123 xi = ii;
Chris@82 124 xo = io;
Chris@82 125 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
Chris@82 126 V Ta, Tk, Te, Tj, T7, Tn, Tf, Tm;
Chris@82 127 {
Chris@82 128 V T8, T9, Tc, Td;
Chris@82 129 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@82 130 T9 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@82 131 Ta = VSUB(T8, T9);
Chris@82 132 Tk = VADD(T8, T9);
Chris@82 133 Tc = LD(&(xi[0]), ivs, &(xi[0]));
Chris@82 134 Td = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@82 135 Te = VSUB(Tc, Td);
Chris@82 136 Tj = VADD(Tc, Td);
Chris@82 137 {
Chris@82 138 V T1, T2, T3, T4, T5, T6;
Chris@82 139 T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@82 140 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@82 141 T3 = VSUB(T1, T2);
Chris@82 142 T4 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@82 143 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@82 144 T6 = VSUB(T4, T5);
Chris@82 145 T7 = VMUL(LDK(KP707106781), VSUB(T3, T6));
Chris@82 146 Tn = VADD(T4, T5);
Chris@82 147 Tf = VMUL(LDK(KP707106781), VADD(T3, T6));
Chris@82 148 Tm = VADD(T1, T2);
Chris@82 149 }
Chris@82 150 }
Chris@82 151 {
Chris@82 152 V Tb, Tg, Tp, Tq;
Chris@82 153 Tb = VBYI(VSUB(T7, Ta));
Chris@82 154 Tg = VSUB(Te, Tf);
Chris@82 155 ST(&(xo[WS(os, 3)]), VADD(Tb, Tg), ovs, &(xo[WS(os, 1)]));
Chris@82 156 ST(&(xo[WS(os, 5)]), VSUB(Tg, Tb), ovs, &(xo[WS(os, 1)]));
Chris@82 157 Tp = VADD(Tj, Tk);
Chris@82 158 Tq = VADD(Tm, Tn);
Chris@82 159 ST(&(xo[WS(os, 4)]), VSUB(Tp, Tq), ovs, &(xo[0]));
Chris@82 160 ST(&(xo[0]), VADD(Tp, Tq), ovs, &(xo[0]));
Chris@82 161 }
Chris@82 162 {
Chris@82 163 V Th, Ti, Tl, To;
Chris@82 164 Th = VBYI(VADD(Ta, T7));
Chris@82 165 Ti = VADD(Te, Tf);
Chris@82 166 ST(&(xo[WS(os, 1)]), VADD(Th, Ti), ovs, &(xo[WS(os, 1)]));
Chris@82 167 ST(&(xo[WS(os, 7)]), VSUB(Ti, Th), ovs, &(xo[WS(os, 1)]));
Chris@82 168 Tl = VSUB(Tj, Tk);
Chris@82 169 To = VBYI(VSUB(Tm, Tn));
Chris@82 170 ST(&(xo[WS(os, 6)]), VSUB(Tl, To), ovs, &(xo[0]));
Chris@82 171 ST(&(xo[WS(os, 2)]), VADD(Tl, To), ovs, &(xo[0]));
Chris@82 172 }
Chris@82 173 }
Chris@82 174 }
Chris@82 175 VLEAVE();
Chris@82 176 }
Chris@82 177
Chris@82 178 static const kdft_desc desc = { 8, XSIMD_STRING("n1bv_8"), {26, 2, 0, 0}, &GENUS, 0, 0, 0, 0 };
Chris@82 179
Chris@82 180 void XSIMD(codelet_n1bv_8) (planner *p) {
Chris@82 181 X(kdft_register) (p, n1bv_8, &desc);
Chris@82 182 }
Chris@82 183
Chris@82 184 #endif