annotate src/fftw-3.3.8/dft/scalar/codelets/t1_5.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:04:12 EDT 2018 */
Chris@82 23
Chris@82 24 #include "dft/codelet-dft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 40 FP additions, 34 FP multiplications,
Chris@82 32 * (or, 14 additions, 8 multiplications, 26 fused multiply/add),
Chris@82 33 * 31 stack variables, 4 constants, and 20 memory accesses
Chris@82 34 */
Chris@82 35 #include "dft/scalar/t.h"
Chris@82 36
Chris@82 37 static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 38 {
Chris@82 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@82 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@82 41 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@82 42 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@82 43 {
Chris@82 44 INT m;
Chris@82 45 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@82 46 E T1, TM, T7, Tx, Td, Tz, Te, TJ, Tk, TC, Tq, TE, Tr, TK;
Chris@82 47 T1 = ri[0];
Chris@82 48 TM = ii[0];
Chris@82 49 {
Chris@82 50 E T3, T6, T4, Tw, T9, Tc, Ta, Ty, T2, T8, T5, Tb;
Chris@82 51 T3 = ri[WS(rs, 1)];
Chris@82 52 T6 = ii[WS(rs, 1)];
Chris@82 53 T2 = W[0];
Chris@82 54 T4 = T2 * T3;
Chris@82 55 Tw = T2 * T6;
Chris@82 56 T9 = ri[WS(rs, 4)];
Chris@82 57 Tc = ii[WS(rs, 4)];
Chris@82 58 T8 = W[6];
Chris@82 59 Ta = T8 * T9;
Chris@82 60 Ty = T8 * Tc;
Chris@82 61 T5 = W[1];
Chris@82 62 T7 = FMA(T5, T6, T4);
Chris@82 63 Tx = FNMS(T5, T3, Tw);
Chris@82 64 Tb = W[7];
Chris@82 65 Td = FMA(Tb, Tc, Ta);
Chris@82 66 Tz = FNMS(Tb, T9, Ty);
Chris@82 67 Te = T7 + Td;
Chris@82 68 TJ = Tx + Tz;
Chris@82 69 }
Chris@82 70 {
Chris@82 71 E Tg, Tj, Th, TB, Tm, Tp, Tn, TD, Tf, Tl, Ti, To;
Chris@82 72 Tg = ri[WS(rs, 2)];
Chris@82 73 Tj = ii[WS(rs, 2)];
Chris@82 74 Tf = W[2];
Chris@82 75 Th = Tf * Tg;
Chris@82 76 TB = Tf * Tj;
Chris@82 77 Tm = ri[WS(rs, 3)];
Chris@82 78 Tp = ii[WS(rs, 3)];
Chris@82 79 Tl = W[4];
Chris@82 80 Tn = Tl * Tm;
Chris@82 81 TD = Tl * Tp;
Chris@82 82 Ti = W[3];
Chris@82 83 Tk = FMA(Ti, Tj, Th);
Chris@82 84 TC = FNMS(Ti, Tg, TB);
Chris@82 85 To = W[5];
Chris@82 86 Tq = FMA(To, Tp, Tn);
Chris@82 87 TE = FNMS(To, Tm, TD);
Chris@82 88 Tr = Tk + Tq;
Chris@82 89 TK = TC + TE;
Chris@82 90 }
Chris@82 91 {
Chris@82 92 E Tu, Ts, Tt, TG, TI, TA, TF, TH, Tv;
Chris@82 93 Tu = Te - Tr;
Chris@82 94 Ts = Te + Tr;
Chris@82 95 Tt = FNMS(KP250000000, Ts, T1);
Chris@82 96 TA = Tx - Tz;
Chris@82 97 TF = TC - TE;
Chris@82 98 TG = FMA(KP618033988, TF, TA);
Chris@82 99 TI = FNMS(KP618033988, TA, TF);
Chris@82 100 ri[0] = T1 + Ts;
Chris@82 101 TH = FNMS(KP559016994, Tu, Tt);
Chris@82 102 ri[WS(rs, 2)] = FNMS(KP951056516, TI, TH);
Chris@82 103 ri[WS(rs, 3)] = FMA(KP951056516, TI, TH);
Chris@82 104 Tv = FMA(KP559016994, Tu, Tt);
Chris@82 105 ri[WS(rs, 4)] = FNMS(KP951056516, TG, Tv);
Chris@82 106 ri[WS(rs, 1)] = FMA(KP951056516, TG, Tv);
Chris@82 107 }
Chris@82 108 {
Chris@82 109 E TO, TL, TN, TS, TU, TQ, TR, TT, TP;
Chris@82 110 TO = TJ - TK;
Chris@82 111 TL = TJ + TK;
Chris@82 112 TN = FNMS(KP250000000, TL, TM);
Chris@82 113 TQ = T7 - Td;
Chris@82 114 TR = Tk - Tq;
Chris@82 115 TS = FMA(KP618033988, TR, TQ);
Chris@82 116 TU = FNMS(KP618033988, TQ, TR);
Chris@82 117 ii[0] = TL + TM;
Chris@82 118 TT = FNMS(KP559016994, TO, TN);
Chris@82 119 ii[WS(rs, 2)] = FMA(KP951056516, TU, TT);
Chris@82 120 ii[WS(rs, 3)] = FNMS(KP951056516, TU, TT);
Chris@82 121 TP = FMA(KP559016994, TO, TN);
Chris@82 122 ii[WS(rs, 1)] = FNMS(KP951056516, TS, TP);
Chris@82 123 ii[WS(rs, 4)] = FMA(KP951056516, TS, TP);
Chris@82 124 }
Chris@82 125 }
Chris@82 126 }
Chris@82 127 }
Chris@82 128
Chris@82 129 static const tw_instr twinstr[] = {
Chris@82 130 {TW_FULL, 0, 5},
Chris@82 131 {TW_NEXT, 1, 0}
Chris@82 132 };
Chris@82 133
Chris@82 134 static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, {14, 8, 26, 0}, 0, 0, 0 };
Chris@82 135
Chris@82 136 void X(codelet_t1_5) (planner *p) {
Chris@82 137 X(kdft_dit_register) (p, t1_5, &desc);
Chris@82 138 }
Chris@82 139 #else
Chris@82 140
Chris@82 141 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */
Chris@82 142
Chris@82 143 /*
Chris@82 144 * This function contains 40 FP additions, 28 FP multiplications,
Chris@82 145 * (or, 26 additions, 14 multiplications, 14 fused multiply/add),
Chris@82 146 * 29 stack variables, 4 constants, and 20 memory accesses
Chris@82 147 */
Chris@82 148 #include "dft/scalar/t.h"
Chris@82 149
Chris@82 150 static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 151 {
Chris@82 152 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@82 153 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@82 154 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@82 155 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@82 156 {
Chris@82 157 INT m;
Chris@82 158 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@82 159 E T1, TE, Tu, Tx, TJ, TI, TB, TC, TD, Tc, Tn, To;
Chris@82 160 T1 = ri[0];
Chris@82 161 TE = ii[0];
Chris@82 162 {
Chris@82 163 E T6, Ts, Tm, Tw, Tb, Tt, Th, Tv;
Chris@82 164 {
Chris@82 165 E T3, T5, T2, T4;
Chris@82 166 T3 = ri[WS(rs, 1)];
Chris@82 167 T5 = ii[WS(rs, 1)];
Chris@82 168 T2 = W[0];
Chris@82 169 T4 = W[1];
Chris@82 170 T6 = FMA(T2, T3, T4 * T5);
Chris@82 171 Ts = FNMS(T4, T3, T2 * T5);
Chris@82 172 }
Chris@82 173 {
Chris@82 174 E Tj, Tl, Ti, Tk;
Chris@82 175 Tj = ri[WS(rs, 3)];
Chris@82 176 Tl = ii[WS(rs, 3)];
Chris@82 177 Ti = W[4];
Chris@82 178 Tk = W[5];
Chris@82 179 Tm = FMA(Ti, Tj, Tk * Tl);
Chris@82 180 Tw = FNMS(Tk, Tj, Ti * Tl);
Chris@82 181 }
Chris@82 182 {
Chris@82 183 E T8, Ta, T7, T9;
Chris@82 184 T8 = ri[WS(rs, 4)];
Chris@82 185 Ta = ii[WS(rs, 4)];
Chris@82 186 T7 = W[6];
Chris@82 187 T9 = W[7];
Chris@82 188 Tb = FMA(T7, T8, T9 * Ta);
Chris@82 189 Tt = FNMS(T9, T8, T7 * Ta);
Chris@82 190 }
Chris@82 191 {
Chris@82 192 E Te, Tg, Td, Tf;
Chris@82 193 Te = ri[WS(rs, 2)];
Chris@82 194 Tg = ii[WS(rs, 2)];
Chris@82 195 Td = W[2];
Chris@82 196 Tf = W[3];
Chris@82 197 Th = FMA(Td, Te, Tf * Tg);
Chris@82 198 Tv = FNMS(Tf, Te, Td * Tg);
Chris@82 199 }
Chris@82 200 Tu = Ts - Tt;
Chris@82 201 Tx = Tv - Tw;
Chris@82 202 TJ = Th - Tm;
Chris@82 203 TI = T6 - Tb;
Chris@82 204 TB = Ts + Tt;
Chris@82 205 TC = Tv + Tw;
Chris@82 206 TD = TB + TC;
Chris@82 207 Tc = T6 + Tb;
Chris@82 208 Tn = Th + Tm;
Chris@82 209 To = Tc + Tn;
Chris@82 210 }
Chris@82 211 ri[0] = T1 + To;
Chris@82 212 ii[0] = TD + TE;
Chris@82 213 {
Chris@82 214 E Ty, TA, Tr, Tz, Tp, Tq;
Chris@82 215 Ty = FMA(KP951056516, Tu, KP587785252 * Tx);
Chris@82 216 TA = FNMS(KP587785252, Tu, KP951056516 * Tx);
Chris@82 217 Tp = KP559016994 * (Tc - Tn);
Chris@82 218 Tq = FNMS(KP250000000, To, T1);
Chris@82 219 Tr = Tp + Tq;
Chris@82 220 Tz = Tq - Tp;
Chris@82 221 ri[WS(rs, 4)] = Tr - Ty;
Chris@82 222 ri[WS(rs, 3)] = Tz + TA;
Chris@82 223 ri[WS(rs, 1)] = Tr + Ty;
Chris@82 224 ri[WS(rs, 2)] = Tz - TA;
Chris@82 225 }
Chris@82 226 {
Chris@82 227 E TK, TL, TH, TM, TF, TG;
Chris@82 228 TK = FMA(KP951056516, TI, KP587785252 * TJ);
Chris@82 229 TL = FNMS(KP587785252, TI, KP951056516 * TJ);
Chris@82 230 TF = KP559016994 * (TB - TC);
Chris@82 231 TG = FNMS(KP250000000, TD, TE);
Chris@82 232 TH = TF + TG;
Chris@82 233 TM = TG - TF;
Chris@82 234 ii[WS(rs, 1)] = TH - TK;
Chris@82 235 ii[WS(rs, 3)] = TM - TL;
Chris@82 236 ii[WS(rs, 4)] = TK + TH;
Chris@82 237 ii[WS(rs, 2)] = TL + TM;
Chris@82 238 }
Chris@82 239 }
Chris@82 240 }
Chris@82 241 }
Chris@82 242
Chris@82 243 static const tw_instr twinstr[] = {
Chris@82 244 {TW_FULL, 0, 5},
Chris@82 245 {TW_NEXT, 1, 0}
Chris@82 246 };
Chris@82 247
Chris@82 248 static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, {26, 14, 14, 0}, 0, 0, 0 };
Chris@82 249
Chris@82 250 void X(codelet_t1_5) (planner *p) {
Chris@82 251 X(kdft_dit_register) (p, t1_5, &desc);
Chris@82 252 }
Chris@82 253 #endif