annotate src/fftw-3.3.5/rdft/simd/common/hc2cfdftv_8.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:52:40 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-rdft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 41 FP additions, 40 FP multiplications,
Chris@42 32 * (or, 23 additions, 22 multiplications, 18 fused multiply/add),
Chris@42 33 * 52 stack variables, 2 constants, and 16 memory accesses
Chris@42 34 */
Chris@42 35 #include "hc2cfv.h"
Chris@42 36
Chris@42 37 static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@42 40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 41 {
Chris@42 42 INT m;
Chris@42 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@42 44 V T3, Tc, Tl, Ts, Tf, Tg, Te, Tp, T7, Ta, T1, T2, Tb, Tj, Tk;
Chris@42 45 V Ti, Tr, T5, T6, T4, T9, Th, Tq, TC, T8, Td, TF, Tm, TG, TD;
Chris@42 46 V Tt, Tu, Tn, TH, TL, TE, TK, Tz, Tv, Ty, To, TJ, TI, TN, TM;
Chris@42 47 V TB, TA, Tx, Tw;
Chris@42 48 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@42 49 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@42 50 Tb = LDW(&(W[0]));
Chris@42 51 Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@42 52 Tk = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@42 53 Ti = LDW(&(W[TWVL * 12]));
Chris@42 54 Tr = LDW(&(W[TWVL * 10]));
Chris@42 55 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@42 56 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@42 57 T3 = VFMACONJ(T2, T1);
Chris@42 58 Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1));
Chris@42 59 T4 = LDW(&(W[TWVL * 6]));
Chris@42 60 T9 = LDW(&(W[TWVL * 8]));
Chris@42 61 Tl = VZMULIJ(Ti, VFNMSCONJ(Tk, Tj));
Chris@42 62 Ts = VZMULJ(Tr, VFMACONJ(Tk, Tj));
Chris@42 63 Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@42 64 Tg = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@42 65 Te = LDW(&(W[TWVL * 4]));
Chris@42 66 Tp = LDW(&(W[TWVL * 2]));
Chris@42 67 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
Chris@42 68 Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5));
Chris@42 69 Th = VZMULIJ(Te, VFNMSCONJ(Tg, Tf));
Chris@42 70 Tq = VZMULJ(Tp, VFMACONJ(Tg, Tf));
Chris@42 71 TC = VADD(T3, T7);
Chris@42 72 T8 = VSUB(T3, T7);
Chris@42 73 Td = VSUB(Ta, Tc);
Chris@42 74 TF = VADD(Tc, Ta);
Chris@42 75 Tm = VSUB(Th, Tl);
Chris@42 76 TG = VADD(Th, Tl);
Chris@42 77 TD = VADD(Tq, Ts);
Chris@42 78 Tt = VSUB(Tq, Ts);
Chris@42 79 Tu = VSUB(Tm, Td);
Chris@42 80 Tn = VADD(Td, Tm);
Chris@42 81 TH = VSUB(TF, TG);
Chris@42 82 TL = VADD(TF, TG);
Chris@42 83 TE = VSUB(TC, TD);
Chris@42 84 TK = VADD(TC, TD);
Chris@42 85 Tz = VFMA(LDK(KP707106781), Tu, Tt);
Chris@42 86 Tv = VFNMS(LDK(KP707106781), Tu, Tt);
Chris@42 87 Ty = VFNMS(LDK(KP707106781), Tn, T8);
Chris@42 88 To = VFMA(LDK(KP707106781), Tn, T8);
Chris@42 89 TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TH, TE)));
Chris@42 90 TI = VMUL(LDK(KP500000000), VFMAI(TH, TE));
Chris@42 91 TN = VCONJ(VMUL(LDK(KP500000000), VADD(TL, TK)));
Chris@42 92 TM = VMUL(LDK(KP500000000), VSUB(TK, TL));
Chris@42 93 TB = VMUL(LDK(KP500000000), VFMAI(Tz, Ty));
Chris@42 94 TA = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tz, Ty)));
Chris@42 95 Tx = VCONJ(VMUL(LDK(KP500000000), VFMAI(Tv, To)));
Chris@42 96 Tw = VMUL(LDK(KP500000000), VFNMSI(Tv, To));
Chris@42 97 ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)]));
Chris@42 98 ST(&(Rp[WS(rs, 2)]), TI, ms, &(Rp[0]));
Chris@42 99 ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)]));
Chris@42 100 ST(&(Rp[0]), TM, ms, &(Rp[0]));
Chris@42 101 ST(&(Rp[WS(rs, 3)]), TB, ms, &(Rp[WS(rs, 1)]));
Chris@42 102 ST(&(Rm[WS(rs, 2)]), TA, -ms, &(Rm[0]));
Chris@42 103 ST(&(Rm[0]), Tx, -ms, &(Rm[0]));
Chris@42 104 ST(&(Rp[WS(rs, 1)]), Tw, ms, &(Rp[WS(rs, 1)]));
Chris@42 105 }
Chris@42 106 }
Chris@42 107 VLEAVE();
Chris@42 108 }
Chris@42 109
Chris@42 110 static const tw_instr twinstr[] = {
Chris@42 111 VTW(1, 1),
Chris@42 112 VTW(1, 2),
Chris@42 113 VTW(1, 3),
Chris@42 114 VTW(1, 4),
Chris@42 115 VTW(1, 5),
Chris@42 116 VTW(1, 6),
Chris@42 117 VTW(1, 7),
Chris@42 118 {TW_NEXT, VL, 0}
Chris@42 119 };
Chris@42 120
Chris@42 121 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {23, 22, 18, 0} };
Chris@42 122
Chris@42 123 void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
Chris@42 124 X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
Chris@42 125 }
Chris@42 126 #else /* HAVE_FMA */
Chris@42 127
Chris@42 128 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */
Chris@42 129
Chris@42 130 /*
Chris@42 131 * This function contains 41 FP additions, 23 FP multiplications,
Chris@42 132 * (or, 41 additions, 23 multiplications, 0 fused multiply/add),
Chris@42 133 * 57 stack variables, 3 constants, and 16 memory accesses
Chris@42 134 */
Chris@42 135 #include "hc2cfv.h"
Chris@42 136
Chris@42 137 static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 138 {
Chris@42 139 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 140 DVK(KP353553390, +0.353553390593273762200422181052424519642417969);
Chris@42 141 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@42 142 {
Chris@42 143 INT m;
Chris@42 144 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@42 145 V Ta, TE, Tr, TF, Tl, TK, Tw, TG, T1, T6, T3, T8, T2, T7, T4;
Chris@42 146 V T9, T5, To, Tq, Tn, Tp, Tc, Th, Te, Tj, Td, Ti, Tf, Tk, Tb;
Chris@42 147 V Tg, Tt, Tv, Ts, Tu, Ty, Tz, Tm, Tx, TC, TD, TA, TB, TI, TO;
Chris@42 148 V TL, TP, TH, TJ, TM, TR, TN, TQ;
Chris@42 149 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@42 150 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@42 151 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@42 152 T3 = VCONJ(T2);
Chris@42 153 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@42 154 T8 = VCONJ(T7);
Chris@42 155 T4 = VADD(T1, T3);
Chris@42 156 T5 = LDW(&(W[TWVL * 6]));
Chris@42 157 T9 = VZMULJ(T5, VADD(T6, T8));
Chris@42 158 Ta = VADD(T4, T9);
Chris@42 159 TE = VMUL(LDK(KP500000000), VSUB(T4, T9));
Chris@42 160 Tn = LDW(&(W[0]));
Chris@42 161 To = VZMULIJ(Tn, VSUB(T3, T1));
Chris@42 162 Tp = LDW(&(W[TWVL * 8]));
Chris@42 163 Tq = VZMULIJ(Tp, VSUB(T8, T6));
Chris@42 164 Tr = VADD(To, Tq);
Chris@42 165 TF = VSUB(To, Tq);
Chris@42 166 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@42 167 Th = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@42 168 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@42 169 Te = VCONJ(Td);
Chris@42 170 Ti = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@42 171 Tj = VCONJ(Ti);
Chris@42 172 Tb = LDW(&(W[TWVL * 2]));
Chris@42 173 Tf = VZMULJ(Tb, VADD(Tc, Te));
Chris@42 174 Tg = LDW(&(W[TWVL * 10]));
Chris@42 175 Tk = VZMULJ(Tg, VADD(Th, Tj));
Chris@42 176 Tl = VADD(Tf, Tk);
Chris@42 177 TK = VSUB(Tf, Tk);
Chris@42 178 Ts = LDW(&(W[TWVL * 4]));
Chris@42 179 Tt = VZMULIJ(Ts, VSUB(Te, Tc));
Chris@42 180 Tu = LDW(&(W[TWVL * 12]));
Chris@42 181 Tv = VZMULIJ(Tu, VSUB(Tj, Th));
Chris@42 182 Tw = VADD(Tt, Tv);
Chris@42 183 TG = VSUB(Tv, Tt);
Chris@42 184 Tm = VADD(Ta, Tl);
Chris@42 185 Tx = VADD(Tr, Tw);
Chris@42 186 Ty = VCONJ(VMUL(LDK(KP500000000), VSUB(Tm, Tx)));
Chris@42 187 Tz = VMUL(LDK(KP500000000), VADD(Tm, Tx));
Chris@42 188 ST(&(Rm[WS(rs, 3)]), Ty, -ms, &(Rm[WS(rs, 1)]));
Chris@42 189 ST(&(Rp[0]), Tz, ms, &(Rp[0]));
Chris@42 190 TA = VSUB(Ta, Tl);
Chris@42 191 TB = VBYI(VSUB(Tw, Tr));
Chris@42 192 TC = VCONJ(VMUL(LDK(KP500000000), VSUB(TA, TB)));
Chris@42 193 TD = VMUL(LDK(KP500000000), VADD(TA, TB));
Chris@42 194 ST(&(Rm[WS(rs, 1)]), TC, -ms, &(Rm[WS(rs, 1)]));
Chris@42 195 ST(&(Rp[WS(rs, 2)]), TD, ms, &(Rp[0]));
Chris@42 196 TH = VMUL(LDK(KP353553390), VADD(TF, TG));
Chris@42 197 TI = VADD(TE, TH);
Chris@42 198 TO = VSUB(TE, TH);
Chris@42 199 TJ = VMUL(LDK(KP707106781), VSUB(TG, TF));
Chris@42 200 TL = VMUL(LDK(KP500000000), VBYI(VSUB(TJ, TK)));
Chris@42 201 TP = VMUL(LDK(KP500000000), VBYI(VADD(TK, TJ)));
Chris@42 202 TM = VCONJ(VSUB(TI, TL));
Chris@42 203 ST(&(Rm[0]), TM, -ms, &(Rm[0]));
Chris@42 204 TR = VADD(TO, TP);
Chris@42 205 ST(&(Rp[WS(rs, 3)]), TR, ms, &(Rp[WS(rs, 1)]));
Chris@42 206 TN = VADD(TI, TL);
Chris@42 207 ST(&(Rp[WS(rs, 1)]), TN, ms, &(Rp[WS(rs, 1)]));
Chris@42 208 TQ = VCONJ(VSUB(TO, TP));
Chris@42 209 ST(&(Rm[WS(rs, 2)]), TQ, -ms, &(Rm[0]));
Chris@42 210 }
Chris@42 211 }
Chris@42 212 VLEAVE();
Chris@42 213 }
Chris@42 214
Chris@42 215 static const tw_instr twinstr[] = {
Chris@42 216 VTW(1, 1),
Chris@42 217 VTW(1, 2),
Chris@42 218 VTW(1, 3),
Chris@42 219 VTW(1, 4),
Chris@42 220 VTW(1, 5),
Chris@42 221 VTW(1, 6),
Chris@42 222 VTW(1, 7),
Chris@42 223 {TW_NEXT, VL, 0}
Chris@42 224 };
Chris@42 225
Chris@42 226 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {41, 23, 0, 0} };
Chris@42 227
Chris@42 228 void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
Chris@42 229 X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
Chris@42 230 }
Chris@42 231 #endif /* HAVE_FMA */