annotate src/fftw-3.3.5/dft/simd/common/t3bv_8.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:44:45 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-dft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include t3b.h -sign 1 */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 37 FP additions, 32 FP multiplications,
Chris@42 32 * (or, 27 additions, 22 multiplications, 10 fused multiply/add),
Chris@42 33 * 43 stack variables, 1 constants, and 16 memory accesses
Chris@42 34 */
Chris@42 35 #include "t3b.h"
Chris@42 36
Chris@42 37 static void t3bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 40 {
Chris@42 41 INT m;
Chris@42 42 R *x;
Chris@42 43 x = ii;
Chris@42 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@42 45 V T2, T3, Tb, T1, T5, Tn, Tq, T8, Td, T4, Ta, Tp, Tg, Ti, T9;
Chris@42 46 T2 = LDW(&(W[0]));
Chris@42 47 T3 = LDW(&(W[TWVL * 2]));
Chris@42 48 Tb = LDW(&(W[TWVL * 4]));
Chris@42 49 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@42 50 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 51 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 52 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@42 53 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 54 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@42 55 T4 = VZMUL(T2, T3);
Chris@42 56 Ta = VZMULJ(T2, T3);
Chris@42 57 Tp = VZMULJ(T2, Tb);
Chris@42 58 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@42 59 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 60 T9 = VZMUL(T2, T8);
Chris@42 61 {
Chris@42 62 V T6, To, Tc, Tr, Th, Tj;
Chris@42 63 T6 = VZMUL(T4, T5);
Chris@42 64 To = VZMUL(Ta, Tn);
Chris@42 65 Tc = VZMULJ(Ta, Tb);
Chris@42 66 Tr = VZMUL(Tp, Tq);
Chris@42 67 Th = VZMUL(Tb, Tg);
Chris@42 68 Tj = VZMUL(T3, Ti);
Chris@42 69 {
Chris@42 70 V Tx, T7, Te, Ts, Ty, Tk, TB;
Chris@42 71 Tx = VADD(T1, T6);
Chris@42 72 T7 = VSUB(T1, T6);
Chris@42 73 Te = VZMUL(Tc, Td);
Chris@42 74 Ts = VSUB(To, Tr);
Chris@42 75 Ty = VADD(To, Tr);
Chris@42 76 Tk = VSUB(Th, Tj);
Chris@42 77 TB = VADD(Th, Tj);
Chris@42 78 {
Chris@42 79 V Tf, TA, Tz, TD;
Chris@42 80 Tf = VSUB(T9, Te);
Chris@42 81 TA = VADD(T9, Te);
Chris@42 82 Tz = VSUB(Tx, Ty);
Chris@42 83 TD = VADD(Tx, Ty);
Chris@42 84 {
Chris@42 85 V TC, TE, Tl, Tt;
Chris@42 86 TC = VSUB(TA, TB);
Chris@42 87 TE = VADD(TA, TB);
Chris@42 88 Tl = VADD(Tf, Tk);
Chris@42 89 Tt = VSUB(Tf, Tk);
Chris@42 90 {
Chris@42 91 V Tu, Tw, Tm, Tv;
Chris@42 92 ST(&(x[0]), VADD(TD, TE), ms, &(x[0]));
Chris@42 93 ST(&(x[WS(rs, 4)]), VSUB(TD, TE), ms, &(x[0]));
Chris@42 94 ST(&(x[WS(rs, 2)]), VFMAI(TC, Tz), ms, &(x[0]));
Chris@42 95 ST(&(x[WS(rs, 6)]), VFNMSI(TC, Tz), ms, &(x[0]));
Chris@42 96 Tu = VFNMS(LDK(KP707106781), Tt, Ts);
Chris@42 97 Tw = VFMA(LDK(KP707106781), Tt, Ts);
Chris@42 98 Tm = VFNMS(LDK(KP707106781), Tl, T7);
Chris@42 99 Tv = VFMA(LDK(KP707106781), Tl, T7);
Chris@42 100 ST(&(x[WS(rs, 1)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@42 101 ST(&(x[WS(rs, 7)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@42 102 ST(&(x[WS(rs, 5)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)]));
Chris@42 103 ST(&(x[WS(rs, 3)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)]));
Chris@42 104 }
Chris@42 105 }
Chris@42 106 }
Chris@42 107 }
Chris@42 108 }
Chris@42 109 }
Chris@42 110 }
Chris@42 111 VLEAVE();
Chris@42 112 }
Chris@42 113
Chris@42 114 static const tw_instr twinstr[] = {
Chris@42 115 VTW(0, 1),
Chris@42 116 VTW(0, 3),
Chris@42 117 VTW(0, 7),
Chris@42 118 {TW_NEXT, VL, 0}
Chris@42 119 };
Chris@42 120
Chris@42 121 static const ct_desc desc = { 8, XSIMD_STRING("t3bv_8"), twinstr, &GENUS, {27, 22, 10, 0}, 0, 0, 0 };
Chris@42 122
Chris@42 123 void XSIMD(codelet_t3bv_8) (planner *p) {
Chris@42 124 X(kdft_dit_register) (p, t3bv_8, &desc);
Chris@42 125 }
Chris@42 126 #else /* HAVE_FMA */
Chris@42 127
Chris@42 128 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include t3b.h -sign 1 */
Chris@42 129
Chris@42 130 /*
Chris@42 131 * This function contains 37 FP additions, 24 FP multiplications,
Chris@42 132 * (or, 37 additions, 24 multiplications, 0 fused multiply/add),
Chris@42 133 * 31 stack variables, 1 constants, and 16 memory accesses
Chris@42 134 */
Chris@42 135 #include "t3b.h"
Chris@42 136
Chris@42 137 static void t3bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 138 {
Chris@42 139 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 140 {
Chris@42 141 INT m;
Chris@42 142 R *x;
Chris@42 143 x = ii;
Chris@42 144 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@42 145 V T1, T4, T5, Tp, T6, T7, Tj;
Chris@42 146 T1 = LDW(&(W[0]));
Chris@42 147 T4 = LDW(&(W[TWVL * 2]));
Chris@42 148 T5 = VZMULJ(T1, T4);
Chris@42 149 Tp = VZMUL(T1, T4);
Chris@42 150 T6 = LDW(&(W[TWVL * 4]));
Chris@42 151 T7 = VZMULJ(T5, T6);
Chris@42 152 Tj = VZMULJ(T1, T6);
Chris@42 153 {
Chris@42 154 V Ts, Tx, Tm, Ty, Ta, TA, Tf, TB, To, Tr, Tq;
Chris@42 155 To = LD(&(x[0]), ms, &(x[0]));
Chris@42 156 Tq = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 157 Tr = VZMUL(Tp, Tq);
Chris@42 158 Ts = VSUB(To, Tr);
Chris@42 159 Tx = VADD(To, Tr);
Chris@42 160 {
Chris@42 161 V Ti, Tl, Th, Tk;
Chris@42 162 Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 163 Ti = VZMUL(T5, Th);
Chris@42 164 Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@42 165 Tl = VZMUL(Tj, Tk);
Chris@42 166 Tm = VSUB(Ti, Tl);
Chris@42 167 Ty = VADD(Ti, Tl);
Chris@42 168 }
Chris@42 169 {
Chris@42 170 V T3, T9, T2, T8;
Chris@42 171 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 172 T3 = VZMUL(T1, T2);
Chris@42 173 T8 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@42 174 T9 = VZMUL(T7, T8);
Chris@42 175 Ta = VSUB(T3, T9);
Chris@42 176 TA = VADD(T3, T9);
Chris@42 177 }
Chris@42 178 {
Chris@42 179 V Tc, Te, Tb, Td;
Chris@42 180 Tb = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@42 181 Tc = VZMUL(T6, Tb);
Chris@42 182 Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 183 Te = VZMUL(T4, Td);
Chris@42 184 Tf = VSUB(Tc, Te);
Chris@42 185 TB = VADD(Tc, Te);
Chris@42 186 }
Chris@42 187 {
Chris@42 188 V Tz, TC, TD, TE;
Chris@42 189 Tz = VSUB(Tx, Ty);
Chris@42 190 TC = VBYI(VSUB(TA, TB));
Chris@42 191 ST(&(x[WS(rs, 6)]), VSUB(Tz, TC), ms, &(x[0]));
Chris@42 192 ST(&(x[WS(rs, 2)]), VADD(Tz, TC), ms, &(x[0]));
Chris@42 193 TD = VADD(Tx, Ty);
Chris@42 194 TE = VADD(TA, TB);
Chris@42 195 ST(&(x[WS(rs, 4)]), VSUB(TD, TE), ms, &(x[0]));
Chris@42 196 ST(&(x[0]), VADD(TD, TE), ms, &(x[0]));
Chris@42 197 {
Chris@42 198 V Tn, Tv, Tu, Tw, Tg, Tt;
Chris@42 199 Tg = VMUL(LDK(KP707106781), VSUB(Ta, Tf));
Chris@42 200 Tn = VBYI(VSUB(Tg, Tm));
Chris@42 201 Tv = VBYI(VADD(Tm, Tg));
Chris@42 202 Tt = VMUL(LDK(KP707106781), VADD(Ta, Tf));
Chris@42 203 Tu = VSUB(Ts, Tt);
Chris@42 204 Tw = VADD(Ts, Tt);
Chris@42 205 ST(&(x[WS(rs, 3)]), VADD(Tn, Tu), ms, &(x[WS(rs, 1)]));
Chris@42 206 ST(&(x[WS(rs, 7)]), VSUB(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@42 207 ST(&(x[WS(rs, 5)]), VSUB(Tu, Tn), ms, &(x[WS(rs, 1)]));
Chris@42 208 ST(&(x[WS(rs, 1)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
Chris@42 209 }
Chris@42 210 }
Chris@42 211 }
Chris@42 212 }
Chris@42 213 }
Chris@42 214 VLEAVE();
Chris@42 215 }
Chris@42 216
Chris@42 217 static const tw_instr twinstr[] = {
Chris@42 218 VTW(0, 1),
Chris@42 219 VTW(0, 3),
Chris@42 220 VTW(0, 7),
Chris@42 221 {TW_NEXT, VL, 0}
Chris@42 222 };
Chris@42 223
Chris@42 224 static const ct_desc desc = { 8, XSIMD_STRING("t3bv_8"), twinstr, &GENUS, {37, 24, 0, 0}, 0, 0, 0 };
Chris@42 225
Chris@42 226 void XSIMD(codelet_t3bv_8) (planner *p) {
Chris@42 227 X(kdft_dit_register) (p, t3bv_8, &desc);
Chris@42 228 }
Chris@42 229 #endif /* HAVE_FMA */