annotate src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_4.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include hc2cfv.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 15 FP additions, 16 FP multiplications,
Chris@10 32 * (or, 9 additions, 10 multiplications, 6 fused multiply/add),
Chris@10 33 * 21 stack variables, 1 constants, and 8 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cfv.h"
Chris@10 36
Chris@10 37 static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 40 {
Chris@10 41 INT m;
Chris@10 42 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 43 V T1, T2, Tb, T5, T6, T4, T9, T3, Tc, T7, Ta, Tg, T8, Td, Th;
Chris@10 44 V Tf, Te, Ti, Tj;
Chris@10 45 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 46 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 47 Tb = LDW(&(W[0]));
Chris@10 48 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 49 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 50 T4 = LDW(&(W[TWVL * 2]));
Chris@10 51 T9 = LDW(&(W[TWVL * 4]));
Chris@10 52 T3 = VFMACONJ(T2, T1);
Chris@10 53 Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1));
Chris@10 54 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
Chris@10 55 Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5));
Chris@10 56 Tg = VADD(T3, T7);
Chris@10 57 T8 = VSUB(T3, T7);
Chris@10 58 Td = VSUB(Ta, Tc);
Chris@10 59 Th = VADD(Tc, Ta);
Chris@10 60 Tf = VCONJ(VMUL(LDK(KP500000000), VFMAI(Td, T8)));
Chris@10 61 Te = VMUL(LDK(KP500000000), VFNMSI(Td, T8));
Chris@10 62 Ti = VMUL(LDK(KP500000000), VSUB(Tg, Th));
Chris@10 63 Tj = VCONJ(VMUL(LDK(KP500000000), VADD(Th, Tg)));
Chris@10 64 ST(&(Rm[0]), Tf, -ms, &(Rm[0]));
Chris@10 65 ST(&(Rp[WS(rs, 1)]), Te, ms, &(Rp[WS(rs, 1)]));
Chris@10 66 ST(&(Rp[0]), Ti, ms, &(Rp[0]));
Chris@10 67 ST(&(Rm[WS(rs, 1)]), Tj, -ms, &(Rm[WS(rs, 1)]));
Chris@10 68 }
Chris@10 69 }
Chris@10 70 VLEAVE();
Chris@10 71 }
Chris@10 72
Chris@10 73 static const tw_instr twinstr[] = {
Chris@10 74 VTW(1, 1),
Chris@10 75 VTW(1, 2),
Chris@10 76 VTW(1, 3),
Chris@10 77 {TW_NEXT, VL, 0}
Chris@10 78 };
Chris@10 79
Chris@10 80 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {9, 10, 6, 0} };
Chris@10 81
Chris@10 82 void XSIMD(codelet_hc2cfdftv_4) (planner *p) {
Chris@10 83 X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT);
Chris@10 84 }
Chris@10 85 #else /* HAVE_FMA */
Chris@10 86
Chris@10 87 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include hc2cfv.h */
Chris@10 88
Chris@10 89 /*
Chris@10 90 * This function contains 15 FP additions, 10 FP multiplications,
Chris@10 91 * (or, 15 additions, 10 multiplications, 0 fused multiply/add),
Chris@10 92 * 23 stack variables, 1 constants, and 8 memory accesses
Chris@10 93 */
Chris@10 94 #include "hc2cfv.h"
Chris@10 95
Chris@10 96 static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 97 {
Chris@10 98 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 99 {
Chris@10 100 INT m;
Chris@10 101 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 102 V T4, Tc, T9, Te, T1, T3, T2, Tb, T6, T8, T7, T5, Td, Tg, Th;
Chris@10 103 V Ta, Tf, Tk, Tl, Ti, Tj;
Chris@10 104 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 105 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 106 T3 = VCONJ(T2);
Chris@10 107 T4 = VADD(T1, T3);
Chris@10 108 Tb = LDW(&(W[0]));
Chris@10 109 Tc = VZMULIJ(Tb, VSUB(T3, T1));
Chris@10 110 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 111 T7 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 112 T8 = VCONJ(T7);
Chris@10 113 T5 = LDW(&(W[TWVL * 2]));
Chris@10 114 T9 = VZMULJ(T5, VADD(T6, T8));
Chris@10 115 Td = LDW(&(W[TWVL * 4]));
Chris@10 116 Te = VZMULIJ(Td, VSUB(T8, T6));
Chris@10 117 Ta = VSUB(T4, T9);
Chris@10 118 Tf = VBYI(VSUB(Tc, Te));
Chris@10 119 Tg = VMUL(LDK(KP500000000), VSUB(Ta, Tf));
Chris@10 120 Th = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, Tf)));
Chris@10 121 ST(&(Rp[WS(rs, 1)]), Tg, ms, &(Rp[WS(rs, 1)]));
Chris@10 122 ST(&(Rm[0]), Th, -ms, &(Rm[0]));
Chris@10 123 Ti = VADD(T4, T9);
Chris@10 124 Tj = VADD(Tc, Te);
Chris@10 125 Tk = VCONJ(VMUL(LDK(KP500000000), VSUB(Ti, Tj)));
Chris@10 126 Tl = VMUL(LDK(KP500000000), VADD(Ti, Tj));
Chris@10 127 ST(&(Rm[WS(rs, 1)]), Tk, -ms, &(Rm[WS(rs, 1)]));
Chris@10 128 ST(&(Rp[0]), Tl, ms, &(Rp[0]));
Chris@10 129 }
Chris@10 130 }
Chris@10 131 VLEAVE();
Chris@10 132 }
Chris@10 133
Chris@10 134 static const tw_instr twinstr[] = {
Chris@10 135 VTW(1, 1),
Chris@10 136 VTW(1, 2),
Chris@10 137 VTW(1, 3),
Chris@10 138 {TW_NEXT, VL, 0}
Chris@10 139 };
Chris@10 140
Chris@10 141 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {15, 10, 0, 0} };
Chris@10 142
Chris@10 143 void XSIMD(codelet_hc2cfdftv_4) (planner *p) {
Chris@10 144 X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT);
Chris@10 145 }
Chris@10 146 #endif /* HAVE_FMA */