annotate src/fftw-3.3.3/rdft/rdft-dht.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21
Chris@10 22 /* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This
Chris@10 23 is mainly useful because we can use Rader to compute DHTs of prime
Chris@10 24 sizes. It also allows us to express hc2r problems in terms of r2hc
Chris@10 25 (via dht-r2hc), and to do hc2r problems without destroying the input. */
Chris@10 26
Chris@10 27 #include "rdft.h"
Chris@10 28
Chris@10 29 typedef struct {
Chris@10 30 solver super;
Chris@10 31 } S;
Chris@10 32
Chris@10 33 typedef struct {
Chris@10 34 plan_rdft super;
Chris@10 35 plan *cld;
Chris@10 36 INT is, os;
Chris@10 37 INT n;
Chris@10 38 } P;
Chris@10 39
Chris@10 40 static void apply_r2hc(const plan *ego_, R *I, R *O)
Chris@10 41 {
Chris@10 42 const P *ego = (const P *) ego_;
Chris@10 43 INT os;
Chris@10 44 INT i, n;
Chris@10 45
Chris@10 46 {
Chris@10 47 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 48 cld->apply((plan *) cld, I, O);
Chris@10 49 }
Chris@10 50
Chris@10 51 n = ego->n;
Chris@10 52 os = ego->os;
Chris@10 53 for (i = 1; i < n - i; ++i) {
Chris@10 54 E a, b;
Chris@10 55 a = K(0.5) * O[os * i];
Chris@10 56 b = K(0.5) * O[os * (n - i)];
Chris@10 57 O[os * i] = a + b;
Chris@10 58 #if FFT_SIGN == -1
Chris@10 59 O[os * (n - i)] = b - a;
Chris@10 60 #else
Chris@10 61 O[os * (n - i)] = a - b;
Chris@10 62 #endif
Chris@10 63 }
Chris@10 64 }
Chris@10 65
Chris@10 66 /* hc2r, destroying input as usual */
Chris@10 67 static void apply_hc2r(const plan *ego_, R *I, R *O)
Chris@10 68 {
Chris@10 69 const P *ego = (const P *) ego_;
Chris@10 70 INT is = ego->is;
Chris@10 71 INT i, n = ego->n;
Chris@10 72
Chris@10 73 for (i = 1; i < n - i; ++i) {
Chris@10 74 E a, b;
Chris@10 75 a = I[is * i];
Chris@10 76 b = I[is * (n - i)];
Chris@10 77 #if FFT_SIGN == -1
Chris@10 78 I[is * i] = a - b;
Chris@10 79 I[is * (n - i)] = a + b;
Chris@10 80 #else
Chris@10 81 I[is * i] = a + b;
Chris@10 82 I[is * (n - i)] = a - b;
Chris@10 83 #endif
Chris@10 84 }
Chris@10 85
Chris@10 86 {
Chris@10 87 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 88 cld->apply((plan *) cld, I, O);
Chris@10 89 }
Chris@10 90 }
Chris@10 91
Chris@10 92 /* hc2r, without destroying input */
Chris@10 93 static void apply_hc2r_save(const plan *ego_, R *I, R *O)
Chris@10 94 {
Chris@10 95 const P *ego = (const P *) ego_;
Chris@10 96 INT is = ego->is, os = ego->os;
Chris@10 97 INT i, n = ego->n;
Chris@10 98
Chris@10 99 O[0] = I[0];
Chris@10 100 for (i = 1; i < n - i; ++i) {
Chris@10 101 E a, b;
Chris@10 102 a = I[is * i];
Chris@10 103 b = I[is * (n - i)];
Chris@10 104 #if FFT_SIGN == -1
Chris@10 105 O[os * i] = a - b;
Chris@10 106 O[os * (n - i)] = a + b;
Chris@10 107 #else
Chris@10 108 O[os * i] = a + b;
Chris@10 109 O[os * (n - i)] = a - b;
Chris@10 110 #endif
Chris@10 111 }
Chris@10 112 if (i == n - i)
Chris@10 113 O[os * i] = I[is * i];
Chris@10 114
Chris@10 115 {
Chris@10 116 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 117 cld->apply((plan *) cld, O, O);
Chris@10 118 }
Chris@10 119 }
Chris@10 120
Chris@10 121 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 122 {
Chris@10 123 P *ego = (P *) ego_;
Chris@10 124 X(plan_awake)(ego->cld, wakefulness);
Chris@10 125 }
Chris@10 126
Chris@10 127 static void destroy(plan *ego_)
Chris@10 128 {
Chris@10 129 P *ego = (P *) ego_;
Chris@10 130 X(plan_destroy_internal)(ego->cld);
Chris@10 131 }
Chris@10 132
Chris@10 133 static void print(const plan *ego_, printer *p)
Chris@10 134 {
Chris@10 135 const P *ego = (const P *) ego_;
Chris@10 136 p->print(p, "(%s-dht-%D%(%p%))",
Chris@10 137 ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
Chris@10 138 ego->n, ego->cld);
Chris@10 139 }
Chris@10 140
Chris@10 141 static int applicable0(const solver *ego_, const problem *p_)
Chris@10 142 {
Chris@10 143 const problem_rdft *p = (const problem_rdft *) p_;
Chris@10 144 UNUSED(ego_);
Chris@10 145
Chris@10 146 return (1
Chris@10 147 && p->sz->rnk == 1
Chris@10 148 && p->vecsz->rnk == 0
Chris@10 149 && (p->kind[0] == R2HC || p->kind[0] == HC2R)
Chris@10 150
Chris@10 151 /* hack: size-2 DHT etc. are defined as being equivalent
Chris@10 152 to size-2 R2HC in problem.c, so we need this to prevent
Chris@10 153 infinite loops for size 2 in EXHAUSTIVE mode: */
Chris@10 154 && p->sz->dims[0].n > 2
Chris@10 155 );
Chris@10 156 }
Chris@10 157
Chris@10 158 static int applicable(const solver *ego, const problem *p_,
Chris@10 159 const planner *plnr)
Chris@10 160 {
Chris@10 161 return (!NO_SLOWP(plnr) && applicable0(ego, p_));
Chris@10 162 }
Chris@10 163
Chris@10 164 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 165 {
Chris@10 166 P *pln;
Chris@10 167 const problem_rdft *p;
Chris@10 168 problem *cldp;
Chris@10 169 plan *cld;
Chris@10 170
Chris@10 171 static const plan_adt padt = {
Chris@10 172 X(rdft_solve), awake, print, destroy
Chris@10 173 };
Chris@10 174
Chris@10 175 if (!applicable(ego_, p_, plnr))
Chris@10 176 return (plan *)0;
Chris@10 177
Chris@10 178 p = (const problem_rdft *) p_;
Chris@10 179
Chris@10 180 if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr))
Chris@10 181 cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT);
Chris@10 182 else {
Chris@10 183 tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS);
Chris@10 184 cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT);
Chris@10 185 X(tensor_destroy)(sz);
Chris@10 186 }
Chris@10 187 cld = X(mkplan_d)(plnr, cldp);
Chris@10 188 if (!cld) return (plan *)0;
Chris@10 189
Chris@10 190 pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ?
Chris@10 191 apply_r2hc : (NO_DESTROY_INPUTP(plnr) ?
Chris@10 192 apply_hc2r_save : apply_hc2r));
Chris@10 193 pln->n = p->sz->dims[0].n;
Chris@10 194 pln->is = p->sz->dims[0].is;
Chris@10 195 pln->os = p->sz->dims[0].os;
Chris@10 196 pln->cld = cld;
Chris@10 197
Chris@10 198 pln->super.super.ops = cld->ops;
Chris@10 199 pln->super.super.ops.other += 4 * ((pln->n - 1)/2);
Chris@10 200 pln->super.super.ops.add += 2 * ((pln->n - 1)/2);
Chris@10 201 if (p->kind[0] == R2HC)
Chris@10 202 pln->super.super.ops.mul += 2 * ((pln->n - 1)/2);
Chris@10 203 if (pln->super.apply == apply_hc2r_save)
Chris@10 204 pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2);
Chris@10 205
Chris@10 206 return &(pln->super.super);
Chris@10 207 }
Chris@10 208
Chris@10 209 /* constructor */
Chris@10 210 static solver *mksolver(void)
Chris@10 211 {
Chris@10 212 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@10 213 S *slv = MKSOLVER(S, &sadt);
Chris@10 214 return &(slv->super);
Chris@10 215 }
Chris@10 216
Chris@10 217 void X(rdft_dht_register)(planner *p)
Chris@10 218 {
Chris@10 219 REGISTER_SOLVER(p, mksolver());
Chris@10 220 }