annotate src/fftw-3.3.3/rdft/dft-r2hc.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21
Chris@10 22 /* Compute the complex DFT by combining R2HC RDFTs on the real
Chris@10 23 and imaginary parts. This could be useful for people just wanting
Chris@10 24 to link to the real codelets and not the complex ones. It could
Chris@10 25 also even be faster than the complex algorithms for split (as opposed
Chris@10 26 to interleaved) real/imag complex data. */
Chris@10 27
Chris@10 28 #include "rdft.h"
Chris@10 29 #include "dft.h"
Chris@10 30
Chris@10 31 typedef struct {
Chris@10 32 solver super;
Chris@10 33 } S;
Chris@10 34
Chris@10 35 typedef struct {
Chris@10 36 plan_dft super;
Chris@10 37 plan *cld;
Chris@10 38 INT ishift, oshift;
Chris@10 39 INT os;
Chris@10 40 INT n;
Chris@10 41 } P;
Chris@10 42
Chris@10 43 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
Chris@10 44 {
Chris@10 45 const P *ego = (const P *) ego_;
Chris@10 46 INT n;
Chris@10 47
Chris@10 48 UNUSED(ii);
Chris@10 49
Chris@10 50 { /* transform vector of real & imag parts: */
Chris@10 51 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 52 cld->apply((plan *) cld, ri + ego->ishift, ro + ego->oshift);
Chris@10 53 }
Chris@10 54
Chris@10 55 n = ego->n;
Chris@10 56 if (n > 1) {
Chris@10 57 INT i, os = ego->os;
Chris@10 58 for (i = 1; i < (n + 1)/2; ++i) {
Chris@10 59 E rop, iop, iom, rom;
Chris@10 60 rop = ro[os * i];
Chris@10 61 iop = io[os * i];
Chris@10 62 rom = ro[os * (n - i)];
Chris@10 63 iom = io[os * (n - i)];
Chris@10 64 ro[os * i] = rop - iom;
Chris@10 65 io[os * i] = iop + rom;
Chris@10 66 ro[os * (n - i)] = rop + iom;
Chris@10 67 io[os * (n - i)] = iop - rom;
Chris@10 68 }
Chris@10 69 }
Chris@10 70 }
Chris@10 71
Chris@10 72 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 73 {
Chris@10 74 P *ego = (P *) ego_;
Chris@10 75 X(plan_awake)(ego->cld, wakefulness);
Chris@10 76 }
Chris@10 77
Chris@10 78 static void destroy(plan *ego_)
Chris@10 79 {
Chris@10 80 P *ego = (P *) ego_;
Chris@10 81 X(plan_destroy_internal)(ego->cld);
Chris@10 82 }
Chris@10 83
Chris@10 84 static void print(const plan *ego_, printer *p)
Chris@10 85 {
Chris@10 86 const P *ego = (const P *) ego_;
Chris@10 87 p->print(p, "(dft-r2hc-%D%(%p%))", ego->n, ego->cld);
Chris@10 88 }
Chris@10 89
Chris@10 90
Chris@10 91 static int applicable0(const problem *p_)
Chris@10 92 {
Chris@10 93 const problem_dft *p = (const problem_dft *) p_;
Chris@10 94 return ((p->sz->rnk == 1 && p->vecsz->rnk == 0)
Chris@10 95 || (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk))
Chris@10 96 );
Chris@10 97 }
Chris@10 98
Chris@10 99 static int splitp(R *r, R *i, INT n, INT s)
Chris@10 100 {
Chris@10 101 return ((r > i ? (r - i) : (i - r)) >= n * (s > 0 ? s : 0-s));
Chris@10 102 }
Chris@10 103
Chris@10 104 static int applicable(const problem *p_, const planner *plnr)
Chris@10 105 {
Chris@10 106 if (!applicable0(p_)) return 0;
Chris@10 107
Chris@10 108 {
Chris@10 109 const problem_dft *p = (const problem_dft *) p_;
Chris@10 110
Chris@10 111 /* rank-0 problems are always OK */
Chris@10 112 if (p->sz->rnk == 0) return 1;
Chris@10 113
Chris@10 114 /* this solver is ok for split arrays */
Chris@10 115 if (p->sz->rnk == 1 &&
Chris@10 116 splitp(p->ri, p->ii, p->sz->dims[0].n, p->sz->dims[0].is) &&
Chris@10 117 splitp(p->ro, p->io, p->sz->dims[0].n, p->sz->dims[0].os))
Chris@10 118 return 1;
Chris@10 119
Chris@10 120 return !(NO_DFT_R2HCP(plnr));
Chris@10 121 }
Chris@10 122 }
Chris@10 123
Chris@10 124 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 125 {
Chris@10 126 P *pln;
Chris@10 127 const problem_dft *p;
Chris@10 128 plan *cld;
Chris@10 129 INT ishift = 0, oshift = 0;
Chris@10 130
Chris@10 131 static const plan_adt padt = {
Chris@10 132 X(dft_solve), awake, print, destroy
Chris@10 133 };
Chris@10 134
Chris@10 135 UNUSED(ego_);
Chris@10 136 if (!applicable(p_, plnr))
Chris@10 137 return (plan *)0;
Chris@10 138
Chris@10 139 p = (const problem_dft *) p_;
Chris@10 140
Chris@10 141 {
Chris@10 142 tensor *ri_vec = X(mktensor_1d)(2, p->ii - p->ri, p->io - p->ro);
Chris@10 143 tensor *cld_vec = X(tensor_append)(ri_vec, p->vecsz);
Chris@10 144 int i;
Chris@10 145 for (i = 0; i < cld_vec->rnk; ++i) { /* make all istrides > 0 */
Chris@10 146 if (cld_vec->dims[i].is < 0) {
Chris@10 147 INT nm1 = cld_vec->dims[i].n - 1;
Chris@10 148 ishift -= nm1 * (cld_vec->dims[i].is *= -1);
Chris@10 149 oshift -= nm1 * (cld_vec->dims[i].os *= -1);
Chris@10 150 }
Chris@10 151 }
Chris@10 152 cld = X(mkplan_d)(plnr,
Chris@10 153 X(mkproblem_rdft_1)(p->sz, cld_vec,
Chris@10 154 p->ri + ishift,
Chris@10 155 p->ro + oshift, R2HC));
Chris@10 156 X(tensor_destroy2)(ri_vec, cld_vec);
Chris@10 157 }
Chris@10 158 if (!cld) return (plan *)0;
Chris@10 159
Chris@10 160 pln = MKPLAN_DFT(P, &padt, apply);
Chris@10 161
Chris@10 162 if (p->sz->rnk == 0) {
Chris@10 163 pln->n = 1;
Chris@10 164 pln->os = 0;
Chris@10 165 }
Chris@10 166 else {
Chris@10 167 pln->n = p->sz->dims[0].n;
Chris@10 168 pln->os = p->sz->dims[0].os;
Chris@10 169 }
Chris@10 170 pln->ishift = ishift;
Chris@10 171 pln->oshift = oshift;
Chris@10 172
Chris@10 173 pln->cld = cld;
Chris@10 174
Chris@10 175 pln->super.super.ops = cld->ops;
Chris@10 176 pln->super.super.ops.other += 8 * ((pln->n - 1)/2);
Chris@10 177 pln->super.super.ops.add += 4 * ((pln->n - 1)/2);
Chris@10 178 pln->super.super.ops.other += 1; /* estimator hack for nop plans */
Chris@10 179
Chris@10 180 return &(pln->super.super);
Chris@10 181 }
Chris@10 182
Chris@10 183 /* constructor */
Chris@10 184 static solver *mksolver(void)
Chris@10 185 {
Chris@10 186 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
Chris@10 187 S *slv = MKSOLVER(S, &sadt);
Chris@10 188 return &(slv->super);
Chris@10 189 }
Chris@10 190
Chris@10 191 void X(dft_r2hc_register)(planner *p)
Chris@10 192 {
Chris@10 193 REGISTER_SOLVER(p, mksolver());
Chris@10 194 }