annotate src/fftw-3.3.3/doc/html/1d-Real_002dodd-DFTs-_0028DSTs_0029.html @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 <html lang="en">
Chris@10 2 <head>
Chris@10 3 <title>1d Real-odd DFTs (DSTs) - FFTW 3.3.3</title>
Chris@10 4 <meta http-equiv="Content-Type" content="text/html">
Chris@10 5 <meta name="description" content="FFTW 3.3.3">
Chris@10 6 <meta name="generator" content="makeinfo 4.13">
Chris@10 7 <link title="Top" rel="start" href="index.html#Top">
Chris@10 8 <link rel="up" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
Chris@10 9 <link rel="prev" href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" title="1d Real-even DFTs (DCTs)">
Chris@10 10 <link rel="next" href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" title="1d Discrete Hartley Transforms (DHTs)">
Chris@10 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
Chris@10 12 <!--
Chris@10 13 This manual is for FFTW
Chris@10 14 (version 3.3.3, 25 November 2012).
Chris@10 15
Chris@10 16 Copyright (C) 2003 Matteo Frigo.
Chris@10 17
Chris@10 18 Copyright (C) 2003 Massachusetts Institute of Technology.
Chris@10 19
Chris@10 20 Permission is granted to make and distribute verbatim copies of
Chris@10 21 this manual provided the copyright notice and this permission
Chris@10 22 notice are preserved on all copies.
Chris@10 23
Chris@10 24 Permission is granted to copy and distribute modified versions of
Chris@10 25 this manual under the conditions for verbatim copying, provided
Chris@10 26 that the entire resulting derived work is distributed under the
Chris@10 27 terms of a permission notice identical to this one.
Chris@10 28
Chris@10 29 Permission is granted to copy and distribute translations of this
Chris@10 30 manual into another language, under the above conditions for
Chris@10 31 modified versions, except that this permission notice may be
Chris@10 32 stated in a translation approved by the Free Software Foundation.
Chris@10 33 -->
Chris@10 34 <meta http-equiv="Content-Style-Type" content="text/css">
Chris@10 35 <style type="text/css"><!--
Chris@10 36 pre.display { font-family:inherit }
Chris@10 37 pre.format { font-family:inherit }
Chris@10 38 pre.smalldisplay { font-family:inherit; font-size:smaller }
Chris@10 39 pre.smallformat { font-family:inherit; font-size:smaller }
Chris@10 40 pre.smallexample { font-size:smaller }
Chris@10 41 pre.smalllisp { font-size:smaller }
Chris@10 42 span.sc { font-variant:small-caps }
Chris@10 43 span.roman { font-family:serif; font-weight:normal; }
Chris@10 44 span.sansserif { font-family:sans-serif; font-weight:normal; }
Chris@10 45 --></style>
Chris@10 46 </head>
Chris@10 47 <body>
Chris@10 48 <div class="node">
Chris@10 49 <a name="1d-Real-odd-DFTs-(DSTs)"></a>
Chris@10 50 <a name="g_t1d-Real_002dodd-DFTs-_0028DSTs_0029"></a>
Chris@10 51 <p>
Chris@10 52 Next:&nbsp;<a rel="next" accesskey="n" href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029">1d Discrete Hartley Transforms (DHTs)</a>,
Chris@10 53 Previous:&nbsp;<a rel="previous" accesskey="p" href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029">1d Real-even DFTs (DCTs)</a>,
Chris@10 54 Up:&nbsp;<a rel="up" accesskey="u" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>
Chris@10 55 <hr>
Chris@10 56 </div>
Chris@10 57
Chris@10 58 <h4 class="subsection">4.8.4 1d Real-odd DFTs (DSTs)</h4>
Chris@10 59
Chris@10 60 <p>The Real-odd symmetry DFTs in FFTW are exactly equivalent to the unnormalized
Chris@10 61 forward (and backward) DFTs as defined above, where the input array
Chris@10 62 X of length N is purely real and is also <dfn>odd</dfn> symmetry. In
Chris@10 63 this case, the output is odd symmetry and purely imaginary.
Chris@10 64 <a name="index-real_002dodd-DFT-312"></a><a name="index-RODFT-313"></a>
Chris@10 65
Chris@10 66 <p><a name="index-RODFT00-314"></a>For the case of <code>RODFT00</code>, this odd symmetry means that
Chris@10 67 <i>X<sub>j</sub> = -X<sub>N-j</sub></i>,where we take X to be periodic so that
Chris@10 68 <i>X<sub>N</sub> = X</i><sub>0</sub>. Because of this redundancy, only the first n real numbers
Chris@10 69 starting at j=1 are actually stored (the j=0 element is
Chris@10 70 zero), where N = 2(n+1).
Chris@10 71
Chris@10 72 <p>The proper definition of odd symmetry for <code>RODFT10</code>,
Chris@10 73 <code>RODFT01</code>, and <code>RODFT11</code> transforms is somewhat more intricate
Chris@10 74 because of the shifts by 1/2 of the input and/or output, although
Chris@10 75 the corresponding boundary conditions are given in <a href="Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029.html#Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029">Real even/odd DFTs (cosine/sine transforms)</a>. Because of the odd symmetry, however,
Chris@10 76 the cosine terms in the DFT all cancel and the remaining sine terms are
Chris@10 77 written explicitly below. This formulation often leads people to call
Chris@10 78 such a transform a <dfn>discrete sine transform</dfn> (DST), although it is
Chris@10 79 really just a special case of the DFT.
Chris@10 80 <a name="index-discrete-sine-transform-315"></a><a name="index-DST-316"></a>
Chris@10 81
Chris@10 82 <p>In each of the definitions below, we transform a real array X of
Chris@10 83 length n to a real array Y of length n:
Chris@10 84
Chris@10 85 <h5 class="subsubheading">RODFT00 (DST-I)</h5>
Chris@10 86
Chris@10 87 <p><a name="index-RODFT00-317"></a>An <code>RODFT00</code> transform (type-I DST) in FFTW is defined by:
Chris@10 88 <center><img src="equation-rodft00.png" align="top">.</center>
Chris@10 89
Chris@10 90 <h5 class="subsubheading">RODFT10 (DST-II)</h5>
Chris@10 91
Chris@10 92 <p><a name="index-RODFT10-318"></a>An <code>RODFT10</code> transform (type-II DST) in FFTW is defined by:
Chris@10 93 <center><img src="equation-rodft10.png" align="top">.</center>
Chris@10 94
Chris@10 95 <h5 class="subsubheading">RODFT01 (DST-III)</h5>
Chris@10 96
Chris@10 97 <p><a name="index-RODFT01-319"></a>An <code>RODFT01</code> transform (type-III DST) in FFTW is defined by:
Chris@10 98 <center><img src="equation-rodft01.png" align="top">.</center>In the case of n=1, this reduces to
Chris@10 99 <i>Y</i><sub>0</sub> = <i>X</i><sub>0</sub>.
Chris@10 100
Chris@10 101 <h5 class="subsubheading">RODFT11 (DST-IV)</h5>
Chris@10 102
Chris@10 103 <p><a name="index-RODFT11-320"></a>An <code>RODFT11</code> transform (type-IV DST) in FFTW is defined by:
Chris@10 104 <center><img src="equation-rodft11.png" align="top">.</center>
Chris@10 105
Chris@10 106 <h5 class="subsubheading">Inverses and Normalization</h5>
Chris@10 107
Chris@10 108 <p>These definitions correspond directly to the unnormalized DFTs used
Chris@10 109 elsewhere in FFTW (hence the factors of 2 in front of the
Chris@10 110 summations). The unnormalized inverse of <code>RODFT00</code> is
Chris@10 111 <code>RODFT00</code>, of <code>RODFT10</code> is <code>RODFT01</code> and vice versa, and
Chris@10 112 of <code>RODFT11</code> is <code>RODFT11</code>. Each unnormalized inverse results
Chris@10 113 in the original array multiplied by N, where N is the
Chris@10 114 <em>logical</em> DFT size. For <code>RODFT00</code>, N=2(n+1);
Chris@10 115 otherwise, N=2n.
Chris@10 116 <a name="index-normalization-321"></a>
Chris@10 117
Chris@10 118 <p>In defining the discrete sine transform, some authors also include
Chris@10 119 additional factors of
Chris@10 120 &radic;2(or its inverse) multiplying selected inputs and/or outputs. This is a
Chris@10 121 mostly cosmetic change that makes the transform orthogonal, but
Chris@10 122 sacrifices the direct equivalence to an antisymmetric DFT.
Chris@10 123
Chris@10 124 <!-- =========> -->
Chris@10 125 </body></html>
Chris@10 126