annotate src/fftw-3.3.3/doc/html/1d-Real_002deven-DFTs-_0028DCTs_0029.html @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 <html lang="en">
Chris@10 2 <head>
Chris@10 3 <title>1d Real-even DFTs (DCTs) - FFTW 3.3.3</title>
Chris@10 4 <meta http-equiv="Content-Type" content="text/html">
Chris@10 5 <meta name="description" content="FFTW 3.3.3">
Chris@10 6 <meta name="generator" content="makeinfo 4.13">
Chris@10 7 <link title="Top" rel="start" href="index.html#Top">
Chris@10 8 <link rel="up" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
Chris@10 9 <link rel="prev" href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" title="The 1d Real-data DFT">
Chris@10 10 <link rel="next" href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029" title="1d Real-odd DFTs (DSTs)">
Chris@10 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
Chris@10 12 <!--
Chris@10 13 This manual is for FFTW
Chris@10 14 (version 3.3.3, 25 November 2012).
Chris@10 15
Chris@10 16 Copyright (C) 2003 Matteo Frigo.
Chris@10 17
Chris@10 18 Copyright (C) 2003 Massachusetts Institute of Technology.
Chris@10 19
Chris@10 20 Permission is granted to make and distribute verbatim copies of
Chris@10 21 this manual provided the copyright notice and this permission
Chris@10 22 notice are preserved on all copies.
Chris@10 23
Chris@10 24 Permission is granted to copy and distribute modified versions of
Chris@10 25 this manual under the conditions for verbatim copying, provided
Chris@10 26 that the entire resulting derived work is distributed under the
Chris@10 27 terms of a permission notice identical to this one.
Chris@10 28
Chris@10 29 Permission is granted to copy and distribute translations of this
Chris@10 30 manual into another language, under the above conditions for
Chris@10 31 modified versions, except that this permission notice may be
Chris@10 32 stated in a translation approved by the Free Software Foundation.
Chris@10 33 -->
Chris@10 34 <meta http-equiv="Content-Style-Type" content="text/css">
Chris@10 35 <style type="text/css"><!--
Chris@10 36 pre.display { font-family:inherit }
Chris@10 37 pre.format { font-family:inherit }
Chris@10 38 pre.smalldisplay { font-family:inherit; font-size:smaller }
Chris@10 39 pre.smallformat { font-family:inherit; font-size:smaller }
Chris@10 40 pre.smallexample { font-size:smaller }
Chris@10 41 pre.smalllisp { font-size:smaller }
Chris@10 42 span.sc { font-variant:small-caps }
Chris@10 43 span.roman { font-family:serif; font-weight:normal; }
Chris@10 44 span.sansserif { font-family:sans-serif; font-weight:normal; }
Chris@10 45 --></style>
Chris@10 46 </head>
Chris@10 47 <body>
Chris@10 48 <div class="node">
Chris@10 49 <a name="1d-Real-even-DFTs-(DCTs)"></a>
Chris@10 50 <a name="g_t1d-Real_002deven-DFTs-_0028DCTs_0029"></a>
Chris@10 51 <p>
Chris@10 52 Next:&nbsp;<a rel="next" accesskey="n" href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029">1d Real-odd DFTs (DSTs)</a>,
Chris@10 53 Previous:&nbsp;<a rel="previous" accesskey="p" href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT">The 1d Real-data DFT</a>,
Chris@10 54 Up:&nbsp;<a rel="up" accesskey="u" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>
Chris@10 55 <hr>
Chris@10 56 </div>
Chris@10 57
Chris@10 58 <h4 class="subsection">4.8.3 1d Real-even DFTs (DCTs)</h4>
Chris@10 59
Chris@10 60 <p>The Real-even symmetry DFTs in FFTW are exactly equivalent to the unnormalized
Chris@10 61 forward (and backward) DFTs as defined above, where the input array
Chris@10 62 X of length N is purely real and is also <dfn>even</dfn> symmetry. In
Chris@10 63 this case, the output array is likewise real and even symmetry.
Chris@10 64 <a name="index-real_002deven-DFT-301"></a><a name="index-REDFT-302"></a>
Chris@10 65
Chris@10 66 <p><a name="index-REDFT00-303"></a>For the case of <code>REDFT00</code>, this even symmetry means that
Chris@10 67 <i>X<sub>j</sub> = X<sub>N-j</sub></i>,where we take X to be periodic so that
Chris@10 68 <i>X<sub>N</sub> = X</i><sub>0</sub>. Because of this redundancy, only the first n real numbers are
Chris@10 69 actually stored, where N = 2(n-1).
Chris@10 70
Chris@10 71 <p>The proper definition of even symmetry for <code>REDFT10</code>,
Chris@10 72 <code>REDFT01</code>, and <code>REDFT11</code> transforms is somewhat more intricate
Chris@10 73 because of the shifts by 1/2 of the input and/or output, although
Chris@10 74 the corresponding boundary conditions are given in <a href="Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029.html#Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029">Real even/odd DFTs (cosine/sine transforms)</a>. Because of the even symmetry, however,
Chris@10 75 the sine terms in the DFT all cancel and the remaining cosine terms are
Chris@10 76 written explicitly below. This formulation often leads people to call
Chris@10 77 such a transform a <dfn>discrete cosine transform</dfn> (DCT), although it is
Chris@10 78 really just a special case of the DFT.
Chris@10 79 <a name="index-discrete-cosine-transform-304"></a><a name="index-DCT-305"></a>
Chris@10 80
Chris@10 81 <p>In each of the definitions below, we transform a real array X of
Chris@10 82 length n to a real array Y of length n:
Chris@10 83
Chris@10 84 <h5 class="subsubheading">REDFT00 (DCT-I)</h5>
Chris@10 85
Chris@10 86 <p><a name="index-REDFT00-306"></a>An <code>REDFT00</code> transform (type-I DCT) in FFTW is defined by:
Chris@10 87 <center><img src="equation-redft00.png" align="top">.</center>Note that this transform is not defined for n=1. For n=2,
Chris@10 88 the summation term above is dropped as you might expect.
Chris@10 89
Chris@10 90 <h5 class="subsubheading">REDFT10 (DCT-II)</h5>
Chris@10 91
Chris@10 92 <p><a name="index-REDFT10-307"></a>An <code>REDFT10</code> transform (type-II DCT, sometimes called &ldquo;the&rdquo; DCT) in FFTW is defined by:
Chris@10 93 <center><img src="equation-redft10.png" align="top">.</center>
Chris@10 94
Chris@10 95 <h5 class="subsubheading">REDFT01 (DCT-III)</h5>
Chris@10 96
Chris@10 97 <p><a name="index-REDFT01-308"></a>An <code>REDFT01</code> transform (type-III DCT) in FFTW is defined by:
Chris@10 98 <center><img src="equation-redft01.png" align="top">.</center>In the case of n=1, this reduces to
Chris@10 99 <i>Y</i><sub>0</sub> = <i>X</i><sub>0</sub>. Up to a scale factor (see below), this is the inverse of <code>REDFT10</code> (&ldquo;the&rdquo; DCT), and so the <code>REDFT01</code> (DCT-III) is sometimes called the &ldquo;IDCT&rdquo;.
Chris@10 100 <a name="index-IDCT-309"></a>
Chris@10 101
Chris@10 102 <h5 class="subsubheading">REDFT11 (DCT-IV)</h5>
Chris@10 103
Chris@10 104 <p><a name="index-REDFT11-310"></a>An <code>REDFT11</code> transform (type-IV DCT) in FFTW is defined by:
Chris@10 105 <center><img src="equation-redft11.png" align="top">.</center>
Chris@10 106
Chris@10 107 <h5 class="subsubheading">Inverses and Normalization</h5>
Chris@10 108
Chris@10 109 <p>These definitions correspond directly to the unnormalized DFTs used
Chris@10 110 elsewhere in FFTW (hence the factors of 2 in front of the
Chris@10 111 summations). The unnormalized inverse of <code>REDFT00</code> is
Chris@10 112 <code>REDFT00</code>, of <code>REDFT10</code> is <code>REDFT01</code> and vice versa, and
Chris@10 113 of <code>REDFT11</code> is <code>REDFT11</code>. Each unnormalized inverse results
Chris@10 114 in the original array multiplied by N, where N is the
Chris@10 115 <em>logical</em> DFT size. For <code>REDFT00</code>, N=2(n-1) (note that
Chris@10 116 n=1 is not defined); otherwise, N=2n.
Chris@10 117 <a name="index-normalization-311"></a>
Chris@10 118
Chris@10 119 <p>In defining the discrete cosine transform, some authors also include
Chris@10 120 additional factors of
Chris@10 121 &radic;2(or its inverse) multiplying selected inputs and/or outputs. This is a
Chris@10 122 mostly cosmetic change that makes the transform orthogonal, but
Chris@10 123 sacrifices the direct equivalence to a symmetric DFT.
Chris@10 124
Chris@10 125 <!-- =========> -->
Chris@10 126 </body></html>
Chris@10 127