annotate src/fftw-3.3.3/dft/simd/common/t1fv_8.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:38:02 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1fv_8 -include t1f.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 33 FP additions, 24 FP multiplications,
Chris@10 32 * (or, 23 additions, 14 multiplications, 10 fused multiply/add),
Chris@10 33 * 36 stack variables, 1 constants, and 16 memory accesses
Chris@10 34 */
Chris@10 35 #include "t1f.h"
Chris@10 36
Chris@10 37 static void t1fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 40 {
Chris@10 41 INT m;
Chris@10 42 R *x;
Chris@10 43 x = ri;
Chris@10 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@10 45 V T1, T2, Th, Tj, T5, T7, Ta, Tc;
Chris@10 46 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 47 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 48 Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 49 Tj = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 50 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 51 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 52 Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@10 53 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 54 {
Chris@10 55 V T3, Ti, Tk, T6, T8, Tb, Td;
Chris@10 56 T3 = BYTWJ(&(W[TWVL * 6]), T2);
Chris@10 57 Ti = BYTWJ(&(W[TWVL * 2]), Th);
Chris@10 58 Tk = BYTWJ(&(W[TWVL * 10]), Tj);
Chris@10 59 T6 = BYTWJ(&(W[0]), T5);
Chris@10 60 T8 = BYTWJ(&(W[TWVL * 8]), T7);
Chris@10 61 Tb = BYTWJ(&(W[TWVL * 12]), Ta);
Chris@10 62 Td = BYTWJ(&(W[TWVL * 4]), Tc);
Chris@10 63 {
Chris@10 64 V Tq, T4, Tr, Tl, Tt, T9, Tu, Te, Tw, Ts;
Chris@10 65 Tq = VADD(T1, T3);
Chris@10 66 T4 = VSUB(T1, T3);
Chris@10 67 Tr = VADD(Ti, Tk);
Chris@10 68 Tl = VSUB(Ti, Tk);
Chris@10 69 Tt = VADD(T6, T8);
Chris@10 70 T9 = VSUB(T6, T8);
Chris@10 71 Tu = VADD(Tb, Td);
Chris@10 72 Te = VSUB(Tb, Td);
Chris@10 73 Tw = VSUB(Tq, Tr);
Chris@10 74 Ts = VADD(Tq, Tr);
Chris@10 75 {
Chris@10 76 V Tx, Tv, Tm, Tf;
Chris@10 77 Tx = VSUB(Tu, Tt);
Chris@10 78 Tv = VADD(Tt, Tu);
Chris@10 79 Tm = VSUB(Te, T9);
Chris@10 80 Tf = VADD(T9, Te);
Chris@10 81 {
Chris@10 82 V Tp, Tn, To, Tg;
Chris@10 83 ST(&(x[WS(rs, 2)]), VFMAI(Tx, Tw), ms, &(x[0]));
Chris@10 84 ST(&(x[WS(rs, 6)]), VFNMSI(Tx, Tw), ms, &(x[0]));
Chris@10 85 ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0]));
Chris@10 86 ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0]));
Chris@10 87 Tp = VFMA(LDK(KP707106781), Tm, Tl);
Chris@10 88 Tn = VFNMS(LDK(KP707106781), Tm, Tl);
Chris@10 89 To = VFNMS(LDK(KP707106781), Tf, T4);
Chris@10 90 Tg = VFMA(LDK(KP707106781), Tf, T4);
Chris@10 91 ST(&(x[WS(rs, 5)]), VFNMSI(Tp, To), ms, &(x[WS(rs, 1)]));
Chris@10 92 ST(&(x[WS(rs, 3)]), VFMAI(Tp, To), ms, &(x[WS(rs, 1)]));
Chris@10 93 ST(&(x[WS(rs, 7)]), VFMAI(Tn, Tg), ms, &(x[WS(rs, 1)]));
Chris@10 94 ST(&(x[WS(rs, 1)]), VFNMSI(Tn, Tg), ms, &(x[WS(rs, 1)]));
Chris@10 95 }
Chris@10 96 }
Chris@10 97 }
Chris@10 98 }
Chris@10 99 }
Chris@10 100 }
Chris@10 101 VLEAVE();
Chris@10 102 }
Chris@10 103
Chris@10 104 static const tw_instr twinstr[] = {
Chris@10 105 VTW(0, 1),
Chris@10 106 VTW(0, 2),
Chris@10 107 VTW(0, 3),
Chris@10 108 VTW(0, 4),
Chris@10 109 VTW(0, 5),
Chris@10 110 VTW(0, 6),
Chris@10 111 VTW(0, 7),
Chris@10 112 {TW_NEXT, VL, 0}
Chris@10 113 };
Chris@10 114
Chris@10 115 static const ct_desc desc = { 8, XSIMD_STRING("t1fv_8"), twinstr, &GENUS, {23, 14, 10, 0}, 0, 0, 0 };
Chris@10 116
Chris@10 117 void XSIMD(codelet_t1fv_8) (planner *p) {
Chris@10 118 X(kdft_dit_register) (p, t1fv_8, &desc);
Chris@10 119 }
Chris@10 120 #else /* HAVE_FMA */
Chris@10 121
Chris@10 122 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1fv_8 -include t1f.h */
Chris@10 123
Chris@10 124 /*
Chris@10 125 * This function contains 33 FP additions, 16 FP multiplications,
Chris@10 126 * (or, 33 additions, 16 multiplications, 0 fused multiply/add),
Chris@10 127 * 24 stack variables, 1 constants, and 16 memory accesses
Chris@10 128 */
Chris@10 129 #include "t1f.h"
Chris@10 130
Chris@10 131 static void t1fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 132 {
Chris@10 133 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 134 {
Chris@10 135 INT m;
Chris@10 136 R *x;
Chris@10 137 x = ri;
Chris@10 138 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@10 139 V T4, Tq, Tm, Tr, T9, Tt, Te, Tu, T1, T3, T2;
Chris@10 140 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 141 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 142 T3 = BYTWJ(&(W[TWVL * 6]), T2);
Chris@10 143 T4 = VSUB(T1, T3);
Chris@10 144 Tq = VADD(T1, T3);
Chris@10 145 {
Chris@10 146 V Tj, Tl, Ti, Tk;
Chris@10 147 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 148 Tj = BYTWJ(&(W[TWVL * 2]), Ti);
Chris@10 149 Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 150 Tl = BYTWJ(&(W[TWVL * 10]), Tk);
Chris@10 151 Tm = VSUB(Tj, Tl);
Chris@10 152 Tr = VADD(Tj, Tl);
Chris@10 153 }
Chris@10 154 {
Chris@10 155 V T6, T8, T5, T7;
Chris@10 156 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 157 T6 = BYTWJ(&(W[0]), T5);
Chris@10 158 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 159 T8 = BYTWJ(&(W[TWVL * 8]), T7);
Chris@10 160 T9 = VSUB(T6, T8);
Chris@10 161 Tt = VADD(T6, T8);
Chris@10 162 }
Chris@10 163 {
Chris@10 164 V Tb, Td, Ta, Tc;
Chris@10 165 Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@10 166 Tb = BYTWJ(&(W[TWVL * 12]), Ta);
Chris@10 167 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 168 Td = BYTWJ(&(W[TWVL * 4]), Tc);
Chris@10 169 Te = VSUB(Tb, Td);
Chris@10 170 Tu = VADD(Tb, Td);
Chris@10 171 }
Chris@10 172 {
Chris@10 173 V Ts, Tv, Tw, Tx;
Chris@10 174 Ts = VADD(Tq, Tr);
Chris@10 175 Tv = VADD(Tt, Tu);
Chris@10 176 ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0]));
Chris@10 177 ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0]));
Chris@10 178 Tw = VSUB(Tq, Tr);
Chris@10 179 Tx = VBYI(VSUB(Tu, Tt));
Chris@10 180 ST(&(x[WS(rs, 6)]), VSUB(Tw, Tx), ms, &(x[0]));
Chris@10 181 ST(&(x[WS(rs, 2)]), VADD(Tw, Tx), ms, &(x[0]));
Chris@10 182 {
Chris@10 183 V Tg, To, Tn, Tp, Tf, Th;
Chris@10 184 Tf = VMUL(LDK(KP707106781), VADD(T9, Te));
Chris@10 185 Tg = VADD(T4, Tf);
Chris@10 186 To = VSUB(T4, Tf);
Chris@10 187 Th = VMUL(LDK(KP707106781), VSUB(Te, T9));
Chris@10 188 Tn = VBYI(VSUB(Th, Tm));
Chris@10 189 Tp = VBYI(VADD(Tm, Th));
Chris@10 190 ST(&(x[WS(rs, 7)]), VSUB(Tg, Tn), ms, &(x[WS(rs, 1)]));
Chris@10 191 ST(&(x[WS(rs, 3)]), VADD(To, Tp), ms, &(x[WS(rs, 1)]));
Chris@10 192 ST(&(x[WS(rs, 1)]), VADD(Tg, Tn), ms, &(x[WS(rs, 1)]));
Chris@10 193 ST(&(x[WS(rs, 5)]), VSUB(To, Tp), ms, &(x[WS(rs, 1)]));
Chris@10 194 }
Chris@10 195 }
Chris@10 196 }
Chris@10 197 }
Chris@10 198 VLEAVE();
Chris@10 199 }
Chris@10 200
Chris@10 201 static const tw_instr twinstr[] = {
Chris@10 202 VTW(0, 1),
Chris@10 203 VTW(0, 2),
Chris@10 204 VTW(0, 3),
Chris@10 205 VTW(0, 4),
Chris@10 206 VTW(0, 5),
Chris@10 207 VTW(0, 6),
Chris@10 208 VTW(0, 7),
Chris@10 209 {TW_NEXT, VL, 0}
Chris@10 210 };
Chris@10 211
Chris@10 212 static const ct_desc desc = { 8, XSIMD_STRING("t1fv_8"), twinstr, &GENUS, {33, 16, 0, 0}, 0, 0, 0 };
Chris@10 213
Chris@10 214 void XSIMD(codelet_t1fv_8) (planner *p) {
Chris@10 215 X(kdft_dit_register) (p, t1fv_8, &desc);
Chris@10 216 }
Chris@10 217 #endif /* HAVE_FMA */