annotate src/fftw-3.3.3/dft/simd/common/t1bv_6.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:39:03 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1bv_6 -include t1b.h -sign 1 */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 23 FP additions, 18 FP multiplications,
Chris@10 32 * (or, 17 additions, 12 multiplications, 6 fused multiply/add),
Chris@10 33 * 27 stack variables, 2 constants, and 12 memory accesses
Chris@10 34 */
Chris@10 35 #include "t1b.h"
Chris@10 36
Chris@10 37 static void t1bv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 41 {
Chris@10 42 INT m;
Chris@10 43 R *x;
Chris@10 44 x = ii;
Chris@10 45 for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) {
Chris@10 46 V T1, T2, Ta, Tc, T5, T7;
Chris@10 47 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 48 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 49 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 50 Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 51 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 52 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 53 {
Chris@10 54 V T3, Tb, Td, T6, T8;
Chris@10 55 T3 = BYTW(&(W[TWVL * 4]), T2);
Chris@10 56 Tb = BYTW(&(W[TWVL * 6]), Ta);
Chris@10 57 Td = BYTW(&(W[0]), Tc);
Chris@10 58 T6 = BYTW(&(W[TWVL * 2]), T5);
Chris@10 59 T8 = BYTW(&(W[TWVL * 8]), T7);
Chris@10 60 {
Chris@10 61 V Ti, T4, Tk, Te, Tj, T9;
Chris@10 62 Ti = VADD(T1, T3);
Chris@10 63 T4 = VSUB(T1, T3);
Chris@10 64 Tk = VADD(Tb, Td);
Chris@10 65 Te = VSUB(Tb, Td);
Chris@10 66 Tj = VADD(T6, T8);
Chris@10 67 T9 = VSUB(T6, T8);
Chris@10 68 {
Chris@10 69 V Tl, Tn, Tf, Th, Tm, Tg;
Chris@10 70 Tl = VADD(Tj, Tk);
Chris@10 71 Tn = VMUL(LDK(KP866025403), VSUB(Tj, Tk));
Chris@10 72 Tf = VADD(T9, Te);
Chris@10 73 Th = VMUL(LDK(KP866025403), VSUB(T9, Te));
Chris@10 74 ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0]));
Chris@10 75 Tm = VFNMS(LDK(KP500000000), Tl, Ti);
Chris@10 76 ST(&(x[WS(rs, 3)]), VADD(T4, Tf), ms, &(x[WS(rs, 1)]));
Chris@10 77 Tg = VFNMS(LDK(KP500000000), Tf, T4);
Chris@10 78 ST(&(x[WS(rs, 4)]), VFMAI(Tn, Tm), ms, &(x[0]));
Chris@10 79 ST(&(x[WS(rs, 2)]), VFNMSI(Tn, Tm), ms, &(x[0]));
Chris@10 80 ST(&(x[WS(rs, 5)]), VFNMSI(Th, Tg), ms, &(x[WS(rs, 1)]));
Chris@10 81 ST(&(x[WS(rs, 1)]), VFMAI(Th, Tg), ms, &(x[WS(rs, 1)]));
Chris@10 82 }
Chris@10 83 }
Chris@10 84 }
Chris@10 85 }
Chris@10 86 }
Chris@10 87 VLEAVE();
Chris@10 88 }
Chris@10 89
Chris@10 90 static const tw_instr twinstr[] = {
Chris@10 91 VTW(0, 1),
Chris@10 92 VTW(0, 2),
Chris@10 93 VTW(0, 3),
Chris@10 94 VTW(0, 4),
Chris@10 95 VTW(0, 5),
Chris@10 96 {TW_NEXT, VL, 0}
Chris@10 97 };
Chris@10 98
Chris@10 99 static const ct_desc desc = { 6, XSIMD_STRING("t1bv_6"), twinstr, &GENUS, {17, 12, 6, 0}, 0, 0, 0 };
Chris@10 100
Chris@10 101 void XSIMD(codelet_t1bv_6) (planner *p) {
Chris@10 102 X(kdft_dit_register) (p, t1bv_6, &desc);
Chris@10 103 }
Chris@10 104 #else /* HAVE_FMA */
Chris@10 105
Chris@10 106 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1bv_6 -include t1b.h -sign 1 */
Chris@10 107
Chris@10 108 /*
Chris@10 109 * This function contains 23 FP additions, 14 FP multiplications,
Chris@10 110 * (or, 21 additions, 12 multiplications, 2 fused multiply/add),
Chris@10 111 * 19 stack variables, 2 constants, and 12 memory accesses
Chris@10 112 */
Chris@10 113 #include "t1b.h"
Chris@10 114
Chris@10 115 static void t1bv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 116 {
Chris@10 117 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 118 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 119 {
Chris@10 120 INT m;
Chris@10 121 R *x;
Chris@10 122 x = ii;
Chris@10 123 for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) {
Chris@10 124 V Tf, Ti, Ta, Tk, T5, Tj, Tc, Te, Td;
Chris@10 125 Tc = LD(&(x[0]), ms, &(x[0]));
Chris@10 126 Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 127 Te = BYTW(&(W[TWVL * 4]), Td);
Chris@10 128 Tf = VSUB(Tc, Te);
Chris@10 129 Ti = VADD(Tc, Te);
Chris@10 130 {
Chris@10 131 V T7, T9, T6, T8;
Chris@10 132 T6 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 133 T7 = BYTW(&(W[TWVL * 6]), T6);
Chris@10 134 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 135 T9 = BYTW(&(W[0]), T8);
Chris@10 136 Ta = VSUB(T7, T9);
Chris@10 137 Tk = VADD(T7, T9);
Chris@10 138 }
Chris@10 139 {
Chris@10 140 V T2, T4, T1, T3;
Chris@10 141 T1 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 142 T2 = BYTW(&(W[TWVL * 2]), T1);
Chris@10 143 T3 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 144 T4 = BYTW(&(W[TWVL * 8]), T3);
Chris@10 145 T5 = VSUB(T2, T4);
Chris@10 146 Tj = VADD(T2, T4);
Chris@10 147 }
Chris@10 148 {
Chris@10 149 V Tb, Tg, Th, Tn, Tl, Tm;
Chris@10 150 Tb = VBYI(VMUL(LDK(KP866025403), VSUB(T5, Ta)));
Chris@10 151 Tg = VADD(T5, Ta);
Chris@10 152 Th = VFNMS(LDK(KP500000000), Tg, Tf);
Chris@10 153 ST(&(x[WS(rs, 1)]), VADD(Tb, Th), ms, &(x[WS(rs, 1)]));
Chris@10 154 ST(&(x[WS(rs, 3)]), VADD(Tf, Tg), ms, &(x[WS(rs, 1)]));
Chris@10 155 ST(&(x[WS(rs, 5)]), VSUB(Th, Tb), ms, &(x[WS(rs, 1)]));
Chris@10 156 Tn = VBYI(VMUL(LDK(KP866025403), VSUB(Tj, Tk)));
Chris@10 157 Tl = VADD(Tj, Tk);
Chris@10 158 Tm = VFNMS(LDK(KP500000000), Tl, Ti);
Chris@10 159 ST(&(x[WS(rs, 2)]), VSUB(Tm, Tn), ms, &(x[0]));
Chris@10 160 ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0]));
Chris@10 161 ST(&(x[WS(rs, 4)]), VADD(Tn, Tm), ms, &(x[0]));
Chris@10 162 }
Chris@10 163 }
Chris@10 164 }
Chris@10 165 VLEAVE();
Chris@10 166 }
Chris@10 167
Chris@10 168 static const tw_instr twinstr[] = {
Chris@10 169 VTW(0, 1),
Chris@10 170 VTW(0, 2),
Chris@10 171 VTW(0, 3),
Chris@10 172 VTW(0, 4),
Chris@10 173 VTW(0, 5),
Chris@10 174 {TW_NEXT, VL, 0}
Chris@10 175 };
Chris@10 176
Chris@10 177 static const ct_desc desc = { 6, XSIMD_STRING("t1bv_6"), twinstr, &GENUS, {21, 12, 2, 0}, 0, 0, 0 };
Chris@10 178
Chris@10 179 void XSIMD(codelet_t1bv_6) (planner *p) {
Chris@10 180 X(kdft_dit_register) (p, t1bv_6, &desc);
Chris@10 181 }
Chris@10 182 #endif /* HAVE_FMA */