annotate osx/include/capnp/schema.capnp @ 66:a9f5ce17330a

Add AppImage files
author Chris Cannam
date Tue, 26 Jun 2018 18:00:44 +0100
parents 0994c39f1e94
children
rev   line source
cannam@62 1 # Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
cannam@62 2 # Licensed under the MIT License:
cannam@62 3 #
cannam@62 4 # Permission is hereby granted, free of charge, to any person obtaining a copy
cannam@62 5 # of this software and associated documentation files (the "Software"), to deal
cannam@62 6 # in the Software without restriction, including without limitation the rights
cannam@62 7 # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
cannam@62 8 # copies of the Software, and to permit persons to whom the Software is
cannam@62 9 # furnished to do so, subject to the following conditions:
cannam@62 10 #
cannam@62 11 # The above copyright notice and this permission notice shall be included in
cannam@62 12 # all copies or substantial portions of the Software.
cannam@62 13 #
cannam@62 14 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
cannam@62 15 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
cannam@62 16 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
cannam@62 17 # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
cannam@62 18 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
cannam@62 19 # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
cannam@62 20 # THE SOFTWARE.
cannam@62 21
cannam@62 22 using Cxx = import "/capnp/c++.capnp";
cannam@62 23
cannam@62 24 @0xa93fc509624c72d9;
cannam@62 25 $Cxx.namespace("capnp::schema");
cannam@62 26
cannam@62 27 using Id = UInt64;
cannam@62 28 # The globally-unique ID of a file, type, or annotation.
cannam@62 29
cannam@62 30 struct Node {
cannam@62 31 id @0 :Id;
cannam@62 32
cannam@62 33 displayName @1 :Text;
cannam@62 34 # Name to present to humans to identify this Node. You should not attempt to parse this. Its
cannam@62 35 # format could change. It is not guaranteed to be unique.
cannam@62 36 #
cannam@62 37 # (On Zooko's triangle, this is the node's nickname.)
cannam@62 38
cannam@62 39 displayNamePrefixLength @2 :UInt32;
cannam@62 40 # If you want a shorter version of `displayName` (just naming this node, without its surrounding
cannam@62 41 # scope), chop off this many characters from the beginning of `displayName`.
cannam@62 42
cannam@62 43 scopeId @3 :Id;
cannam@62 44 # ID of the lexical parent node. Typically, the scope node will have a NestedNode pointing back
cannam@62 45 # at this node, but robust code should avoid relying on this (and, in fact, group nodes are not
cannam@62 46 # listed in the outer struct's nestedNodes, since they are listed in the fields). `scopeId` is
cannam@62 47 # zero if the node has no parent, which is normally only the case with files, but should be
cannam@62 48 # allowed for any kind of node (in order to make runtime type generation easier).
cannam@62 49
cannam@62 50 parameters @32 :List(Parameter);
cannam@62 51 # If this node is parameterized (generic), the list of parameters. Empty for non-generic types.
cannam@62 52
cannam@62 53 isGeneric @33 :Bool;
cannam@62 54 # True if this node is generic, meaning that it or one of its parent scopes has a non-empty
cannam@62 55 # `parameters`.
cannam@62 56
cannam@62 57 struct Parameter {
cannam@62 58 # Information about one of the node's parameters.
cannam@62 59
cannam@62 60 name @0 :Text;
cannam@62 61 }
cannam@62 62
cannam@62 63 nestedNodes @4 :List(NestedNode);
cannam@62 64 # List of nodes nested within this node, along with the names under which they were declared.
cannam@62 65
cannam@62 66 struct NestedNode {
cannam@62 67 name @0 :Text;
cannam@62 68 # Unqualified symbol name. Unlike Node.displayName, this *can* be used programmatically.
cannam@62 69 #
cannam@62 70 # (On Zooko's triangle, this is the node's petname according to its parent scope.)
cannam@62 71
cannam@62 72 id @1 :Id;
cannam@62 73 # ID of the nested node. Typically, the target node's scopeId points back to this node, but
cannam@62 74 # robust code should avoid relying on this.
cannam@62 75 }
cannam@62 76
cannam@62 77 annotations @5 :List(Annotation);
cannam@62 78 # Annotations applied to this node.
cannam@62 79
cannam@62 80 union {
cannam@62 81 # Info specific to each kind of node.
cannam@62 82
cannam@62 83 file @6 :Void;
cannam@62 84
cannam@62 85 struct :group {
cannam@62 86 dataWordCount @7 :UInt16;
cannam@62 87 # Size of the data section, in words.
cannam@62 88
cannam@62 89 pointerCount @8 :UInt16;
cannam@62 90 # Size of the pointer section, in pointers (which are one word each).
cannam@62 91
cannam@62 92 preferredListEncoding @9 :ElementSize;
cannam@62 93 # The preferred element size to use when encoding a list of this struct. If this is anything
cannam@62 94 # other than `inlineComposite` then the struct is one word or less in size and is a candidate
cannam@62 95 # for list packing optimization.
cannam@62 96
cannam@62 97 isGroup @10 :Bool;
cannam@62 98 # If true, then this "struct" node is actually not an independent node, but merely represents
cannam@62 99 # some named union or group within a particular parent struct. This node's scopeId refers
cannam@62 100 # to the parent struct, which may itself be a union/group in yet another struct.
cannam@62 101 #
cannam@62 102 # All group nodes share the same dataWordCount and pointerCount as the top-level
cannam@62 103 # struct, and their fields live in the same ordinal and offset spaces as all other fields in
cannam@62 104 # the struct.
cannam@62 105 #
cannam@62 106 # Note that a named union is considered a special kind of group -- in fact, a named union
cannam@62 107 # is exactly equivalent to a group that contains nothing but an unnamed union.
cannam@62 108
cannam@62 109 discriminantCount @11 :UInt16;
cannam@62 110 # Number of fields in this struct which are members of an anonymous union, and thus may
cannam@62 111 # overlap. If this is non-zero, then a 16-bit discriminant is present indicating which
cannam@62 112 # of the overlapping fields is active. This can never be 1 -- if it is non-zero, it must be
cannam@62 113 # two or more.
cannam@62 114 #
cannam@62 115 # Note that the fields of an unnamed union are considered fields of the scope containing the
cannam@62 116 # union -- an unnamed union is not its own group. So, a top-level struct may contain a
cannam@62 117 # non-zero discriminant count. Named unions, on the other hand, are equivalent to groups
cannam@62 118 # containing unnamed unions. So, a named union has its own independent schema node, with
cannam@62 119 # `isGroup` = true.
cannam@62 120
cannam@62 121 discriminantOffset @12 :UInt32;
cannam@62 122 # If `discriminantCount` is non-zero, this is the offset of the union discriminant, in
cannam@62 123 # multiples of 16 bits.
cannam@62 124
cannam@62 125 fields @13 :List(Field);
cannam@62 126 # Fields defined within this scope (either the struct's top-level fields, or the fields of
cannam@62 127 # a particular group; see `isGroup`).
cannam@62 128 #
cannam@62 129 # The fields are sorted by ordinal number, but note that because groups share the same
cannam@62 130 # ordinal space, the field's index in this list is not necessarily exactly its ordinal.
cannam@62 131 # On the other hand, the field's position in this list does remain the same even as the
cannam@62 132 # protocol evolves, since it is not possible to insert or remove an earlier ordinal.
cannam@62 133 # Therefore, for most use cases, if you want to identify a field by number, it may make the
cannam@62 134 # most sense to use the field's index in this list rather than its ordinal.
cannam@62 135 }
cannam@62 136
cannam@62 137 enum :group {
cannam@62 138 enumerants@14 :List(Enumerant);
cannam@62 139 # Enumerants ordered by numeric value (ordinal).
cannam@62 140 }
cannam@62 141
cannam@62 142 interface :group {
cannam@62 143 methods @15 :List(Method);
cannam@62 144 # Methods ordered by ordinal.
cannam@62 145
cannam@62 146 superclasses @31 :List(Superclass);
cannam@62 147 # Superclasses of this interface.
cannam@62 148 }
cannam@62 149
cannam@62 150 const :group {
cannam@62 151 type @16 :Type;
cannam@62 152 value @17 :Value;
cannam@62 153 }
cannam@62 154
cannam@62 155 annotation :group {
cannam@62 156 type @18 :Type;
cannam@62 157
cannam@62 158 targetsFile @19 :Bool;
cannam@62 159 targetsConst @20 :Bool;
cannam@62 160 targetsEnum @21 :Bool;
cannam@62 161 targetsEnumerant @22 :Bool;
cannam@62 162 targetsStruct @23 :Bool;
cannam@62 163 targetsField @24 :Bool;
cannam@62 164 targetsUnion @25 :Bool;
cannam@62 165 targetsGroup @26 :Bool;
cannam@62 166 targetsInterface @27 :Bool;
cannam@62 167 targetsMethod @28 :Bool;
cannam@62 168 targetsParam @29 :Bool;
cannam@62 169 targetsAnnotation @30 :Bool;
cannam@62 170 }
cannam@62 171 }
cannam@62 172 }
cannam@62 173
cannam@62 174 struct Field {
cannam@62 175 # Schema for a field of a struct.
cannam@62 176
cannam@62 177 name @0 :Text;
cannam@62 178
cannam@62 179 codeOrder @1 :UInt16;
cannam@62 180 # Indicates where this member appeared in the code, relative to other members.
cannam@62 181 # Code ordering may have semantic relevance -- programmers tend to place related fields
cannam@62 182 # together. So, using code ordering makes sense in human-readable formats where ordering is
cannam@62 183 # otherwise irrelevant, like JSON. The values of codeOrder are tightly-packed, so the maximum
cannam@62 184 # value is count(members) - 1. Fields that are members of a union are only ordered relative to
cannam@62 185 # the other members of that union, so the maximum value there is count(union.members).
cannam@62 186
cannam@62 187 annotations @2 :List(Annotation);
cannam@62 188
cannam@62 189 const noDiscriminant :UInt16 = 0xffff;
cannam@62 190
cannam@62 191 discriminantValue @3 :UInt16 = Field.noDiscriminant;
cannam@62 192 # If the field is in a union, this is the value which the union's discriminant should take when
cannam@62 193 # the field is active. If the field is not in a union, this is 0xffff.
cannam@62 194
cannam@62 195 union {
cannam@62 196 slot :group {
cannam@62 197 # A regular, non-group, non-fixed-list field.
cannam@62 198
cannam@62 199 offset @4 :UInt32;
cannam@62 200 # Offset, in units of the field's size, from the beginning of the section in which the field
cannam@62 201 # resides. E.g. for a UInt32 field, multiply this by 4 to get the byte offset from the
cannam@62 202 # beginning of the data section.
cannam@62 203
cannam@62 204 type @5 :Type;
cannam@62 205 defaultValue @6 :Value;
cannam@62 206
cannam@62 207 hadExplicitDefault @10 :Bool;
cannam@62 208 # Whether the default value was specified explicitly. Non-explicit default values are always
cannam@62 209 # zero or empty values. Usually, whether the default value was explicit shouldn't matter.
cannam@62 210 # The main use case for this flag is for structs representing method parameters:
cannam@62 211 # explicitly-defaulted parameters may be allowed to be omitted when calling the method.
cannam@62 212 }
cannam@62 213
cannam@62 214 group :group {
cannam@62 215 # A group.
cannam@62 216
cannam@62 217 typeId @7 :Id;
cannam@62 218 # The ID of the group's node.
cannam@62 219 }
cannam@62 220 }
cannam@62 221
cannam@62 222 ordinal :union {
cannam@62 223 implicit @8 :Void;
cannam@62 224 explicit @9 :UInt16;
cannam@62 225 # The original ordinal number given to the field. You probably should NOT use this; if you need
cannam@62 226 # a numeric identifier for a field, use its position within the field array for its scope.
cannam@62 227 # The ordinal is given here mainly just so that the original schema text can be reproduced given
cannam@62 228 # the compiled version -- i.e. so that `capnp compile -ocapnp` can do its job.
cannam@62 229 }
cannam@62 230 }
cannam@62 231
cannam@62 232 struct Enumerant {
cannam@62 233 # Schema for member of an enum.
cannam@62 234
cannam@62 235 name @0 :Text;
cannam@62 236
cannam@62 237 codeOrder @1 :UInt16;
cannam@62 238 # Specifies order in which the enumerants were declared in the code.
cannam@62 239 # Like Struct.Field.codeOrder.
cannam@62 240
cannam@62 241 annotations @2 :List(Annotation);
cannam@62 242 }
cannam@62 243
cannam@62 244 struct Superclass {
cannam@62 245 id @0 :Id;
cannam@62 246 brand @1 :Brand;
cannam@62 247 }
cannam@62 248
cannam@62 249 struct Method {
cannam@62 250 # Schema for method of an interface.
cannam@62 251
cannam@62 252 name @0 :Text;
cannam@62 253
cannam@62 254 codeOrder @1 :UInt16;
cannam@62 255 # Specifies order in which the methods were declared in the code.
cannam@62 256 # Like Struct.Field.codeOrder.
cannam@62 257
cannam@62 258 implicitParameters @7 :List(Node.Parameter);
cannam@62 259 # The parameters listed in [] (typically, type / generic parameters), whose bindings are intended
cannam@62 260 # to be inferred rather than specified explicitly, although not all languages support this.
cannam@62 261
cannam@62 262 paramStructType @2 :Id;
cannam@62 263 # ID of the parameter struct type. If a named parameter list was specified in the method
cannam@62 264 # declaration (rather than a single struct parameter type) then a corresponding struct type is
cannam@62 265 # auto-generated. Such an auto-generated type will not be listed in the interface's
cannam@62 266 # `nestedNodes` and its `scopeId` will be zero -- it is completely detached from the namespace.
cannam@62 267 # (Awkwardly, it does of course inherit generic parameters from the method's scope, which makes
cannam@62 268 # this a situation where you can't just climb the scope chain to find where a particular
cannam@62 269 # generic parameter was introduced. Making the `scopeId` zero was a mistake.)
cannam@62 270
cannam@62 271 paramBrand @5 :Brand;
cannam@62 272 # Brand of param struct type.
cannam@62 273
cannam@62 274 resultStructType @3 :Id;
cannam@62 275 # ID of the return struct type; similar to `paramStructType`.
cannam@62 276
cannam@62 277 resultBrand @6 :Brand;
cannam@62 278 # Brand of result struct type.
cannam@62 279
cannam@62 280 annotations @4 :List(Annotation);
cannam@62 281 }
cannam@62 282
cannam@62 283 struct Type {
cannam@62 284 # Represents a type expression.
cannam@62 285
cannam@62 286 union {
cannam@62 287 # The ordinals intentionally match those of Value.
cannam@62 288
cannam@62 289 void @0 :Void;
cannam@62 290 bool @1 :Void;
cannam@62 291 int8 @2 :Void;
cannam@62 292 int16 @3 :Void;
cannam@62 293 int32 @4 :Void;
cannam@62 294 int64 @5 :Void;
cannam@62 295 uint8 @6 :Void;
cannam@62 296 uint16 @7 :Void;
cannam@62 297 uint32 @8 :Void;
cannam@62 298 uint64 @9 :Void;
cannam@62 299 float32 @10 :Void;
cannam@62 300 float64 @11 :Void;
cannam@62 301 text @12 :Void;
cannam@62 302 data @13 :Void;
cannam@62 303
cannam@62 304 list :group {
cannam@62 305 elementType @14 :Type;
cannam@62 306 }
cannam@62 307
cannam@62 308 enum :group {
cannam@62 309 typeId @15 :Id;
cannam@62 310 brand @21 :Brand;
cannam@62 311 }
cannam@62 312 struct :group {
cannam@62 313 typeId @16 :Id;
cannam@62 314 brand @22 :Brand;
cannam@62 315 }
cannam@62 316 interface :group {
cannam@62 317 typeId @17 :Id;
cannam@62 318 brand @23 :Brand;
cannam@62 319 }
cannam@62 320
cannam@62 321 anyPointer :union {
cannam@62 322 unconstrained :union {
cannam@62 323 # A regular AnyPointer.
cannam@62 324 #
cannam@62 325 # The name "unconstrained" means as opposed to constraining it to match a type parameter.
cannam@62 326 # In retrospect this name is probably a poor choice given that it may still be constrained
cannam@62 327 # to be a struct, list, or capability.
cannam@62 328
cannam@62 329 anyKind @18 :Void; # truly AnyPointer
cannam@62 330 struct @25 :Void; # AnyStruct
cannam@62 331 list @26 :Void; # AnyList
cannam@62 332 capability @27 :Void; # Capability
cannam@62 333 }
cannam@62 334
cannam@62 335 parameter :group {
cannam@62 336 # This is actually a reference to a type parameter defined within this scope.
cannam@62 337
cannam@62 338 scopeId @19 :Id;
cannam@62 339 # ID of the generic type whose parameter we're referencing. This should be a parent of the
cannam@62 340 # current scope.
cannam@62 341
cannam@62 342 parameterIndex @20 :UInt16;
cannam@62 343 # Index of the parameter within the generic type's parameter list.
cannam@62 344 }
cannam@62 345
cannam@62 346 implicitMethodParameter :group {
cannam@62 347 # This is actually a reference to an implicit (generic) parameter of a method. The only
cannam@62 348 # legal context for this type to appear is inside Method.paramBrand or Method.resultBrand.
cannam@62 349
cannam@62 350 parameterIndex @24 :UInt16;
cannam@62 351 }
cannam@62 352 }
cannam@62 353 }
cannam@62 354 }
cannam@62 355
cannam@62 356 struct Brand {
cannam@62 357 # Specifies bindings for parameters of generics. Since these bindings turn a generic into a
cannam@62 358 # non-generic, we call it the "brand".
cannam@62 359
cannam@62 360 scopes @0 :List(Scope);
cannam@62 361 # For each of the target type and each of its parent scopes, a parameterization may be included
cannam@62 362 # in this list. If no parameterization is included for a particular relevant scope, then either
cannam@62 363 # that scope has no parameters or all parameters should be considered to be `AnyPointer`.
cannam@62 364
cannam@62 365 struct Scope {
cannam@62 366 scopeId @0 :Id;
cannam@62 367 # ID of the scope to which these params apply.
cannam@62 368
cannam@62 369 union {
cannam@62 370 bind @1 :List(Binding);
cannam@62 371 # List of parameter bindings.
cannam@62 372
cannam@62 373 inherit @2 :Void;
cannam@62 374 # The place where this Brand appears is actually within this scope or a sub-scope,
cannam@62 375 # and the bindings for this scope should be inherited from the reference point.
cannam@62 376 }
cannam@62 377 }
cannam@62 378
cannam@62 379 struct Binding {
cannam@62 380 union {
cannam@62 381 unbound @0 :Void;
cannam@62 382 type @1 :Type;
cannam@62 383
cannam@62 384 # TODO(someday): Allow non-type parameters? Unsure if useful.
cannam@62 385 }
cannam@62 386 }
cannam@62 387 }
cannam@62 388
cannam@62 389 struct Value {
cannam@62 390 # Represents a value, e.g. a field default value, constant value, or annotation value.
cannam@62 391
cannam@62 392 union {
cannam@62 393 # The ordinals intentionally match those of Type.
cannam@62 394
cannam@62 395 void @0 :Void;
cannam@62 396 bool @1 :Bool;
cannam@62 397 int8 @2 :Int8;
cannam@62 398 int16 @3 :Int16;
cannam@62 399 int32 @4 :Int32;
cannam@62 400 int64 @5 :Int64;
cannam@62 401 uint8 @6 :UInt8;
cannam@62 402 uint16 @7 :UInt16;
cannam@62 403 uint32 @8 :UInt32;
cannam@62 404 uint64 @9 :UInt64;
cannam@62 405 float32 @10 :Float32;
cannam@62 406 float64 @11 :Float64;
cannam@62 407 text @12 :Text;
cannam@62 408 data @13 :Data;
cannam@62 409
cannam@62 410 list @14 :AnyPointer;
cannam@62 411
cannam@62 412 enum @15 :UInt16;
cannam@62 413 struct @16 :AnyPointer;
cannam@62 414
cannam@62 415 interface @17 :Void;
cannam@62 416 # The only interface value that can be represented statically is "null", whose methods always
cannam@62 417 # throw exceptions.
cannam@62 418
cannam@62 419 anyPointer @18 :AnyPointer;
cannam@62 420 }
cannam@62 421 }
cannam@62 422
cannam@62 423 struct Annotation {
cannam@62 424 # Describes an annotation applied to a declaration. Note AnnotationNode describes the
cannam@62 425 # annotation's declaration, while this describes a use of the annotation.
cannam@62 426
cannam@62 427 id @0 :Id;
cannam@62 428 # ID of the annotation node.
cannam@62 429
cannam@62 430 brand @2 :Brand;
cannam@62 431 # Brand of the annotation.
cannam@62 432 #
cannam@62 433 # Note that the annotation itself is not allowed to be parameterized, but its scope might be.
cannam@62 434
cannam@62 435 value @1 :Value;
cannam@62 436 }
cannam@62 437
cannam@62 438 enum ElementSize {
cannam@62 439 # Possible element sizes for encoded lists. These correspond exactly to the possible values of
cannam@62 440 # the 3-bit element size component of a list pointer.
cannam@62 441
cannam@62 442 empty @0; # aka "void", but that's a keyword.
cannam@62 443 bit @1;
cannam@62 444 byte @2;
cannam@62 445 twoBytes @3;
cannam@62 446 fourBytes @4;
cannam@62 447 eightBytes @5;
cannam@62 448 pointer @6;
cannam@62 449 inlineComposite @7;
cannam@62 450 }
cannam@62 451
cannam@62 452 struct CapnpVersion {
cannam@62 453 major @0 :UInt16;
cannam@62 454 minor @1 :UInt8;
cannam@62 455 micro @2 :UInt8;
cannam@62 456 }
cannam@62 457
cannam@62 458 struct CodeGeneratorRequest {
cannam@62 459 capnpVersion @2 :CapnpVersion;
cannam@62 460 # Version of the `capnp` executable. Generally, code generators should ignore this, but the code
cannam@62 461 # generators that ship with `capnp` itself will print a warning if this mismatches since that
cannam@62 462 # probably indicates something is misconfigured.
cannam@62 463 #
cannam@62 464 # The first version of 'capnp' to set this was 0.6.0. So, if it's missing, the compiler version
cannam@62 465 # is older than that.
cannam@62 466
cannam@62 467 nodes @0 :List(Node);
cannam@62 468 # All nodes parsed by the compiler, including for the files on the command line and their
cannam@62 469 # imports.
cannam@62 470
cannam@62 471 requestedFiles @1 :List(RequestedFile);
cannam@62 472 # Files which were listed on the command line.
cannam@62 473
cannam@62 474 struct RequestedFile {
cannam@62 475 id @0 :Id;
cannam@62 476 # ID of the file.
cannam@62 477
cannam@62 478 filename @1 :Text;
cannam@62 479 # Name of the file as it appeared on the command-line (minus the src-prefix). You may use
cannam@62 480 # this to decide where to write the output.
cannam@62 481
cannam@62 482 imports @2 :List(Import);
cannam@62 483 # List of all imported paths seen in this file.
cannam@62 484
cannam@62 485 struct Import {
cannam@62 486 id @0 :Id;
cannam@62 487 # ID of the imported file.
cannam@62 488
cannam@62 489 name @1 :Text;
cannam@62 490 # Name which *this* file used to refer to the foreign file. This may be a relative name.
cannam@62 491 # This information is provided because it might be useful for code generation, e.g. to
cannam@62 492 # generate #include directives in C++. We don't put this in Node.file because this
cannam@62 493 # information is only meaningful at compile time anyway.
cannam@62 494 #
cannam@62 495 # (On Zooko's triangle, this is the import's petname according to the importing file.)
cannam@62 496 }
cannam@62 497 }
cannam@62 498 }