annotate win32-mingw/include/kj/async.h @ 70:9e21af8f0420

Opus for Windows (MSVC)
author Chris Cannam
date Fri, 25 Jan 2019 12:15:58 +0000
parents eccd51b72864
children
rev   line source
Chris@64 1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
Chris@64 2 // Licensed under the MIT License:
Chris@64 3 //
Chris@64 4 // Permission is hereby granted, free of charge, to any person obtaining a copy
Chris@64 5 // of this software and associated documentation files (the "Software"), to deal
Chris@64 6 // in the Software without restriction, including without limitation the rights
Chris@64 7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
Chris@64 8 // copies of the Software, and to permit persons to whom the Software is
Chris@64 9 // furnished to do so, subject to the following conditions:
Chris@64 10 //
Chris@64 11 // The above copyright notice and this permission notice shall be included in
Chris@64 12 // all copies or substantial portions of the Software.
Chris@64 13 //
Chris@64 14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
Chris@64 15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
Chris@64 16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
Chris@64 17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
Chris@64 18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
Chris@64 19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
Chris@64 20 // THE SOFTWARE.
Chris@64 21
Chris@64 22 #ifndef KJ_ASYNC_H_
Chris@64 23 #define KJ_ASYNC_H_
Chris@64 24
Chris@64 25 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
Chris@64 26 #pragma GCC system_header
Chris@64 27 #endif
Chris@64 28
Chris@64 29 #include "async-prelude.h"
Chris@64 30 #include "exception.h"
Chris@64 31 #include "refcount.h"
Chris@64 32
Chris@64 33 namespace kj {
Chris@64 34
Chris@64 35 class EventLoop;
Chris@64 36 class WaitScope;
Chris@64 37
Chris@64 38 template <typename T>
Chris@64 39 class Promise;
Chris@64 40 template <typename T>
Chris@64 41 class ForkedPromise;
Chris@64 42 template <typename T>
Chris@64 43 class PromiseFulfiller;
Chris@64 44 template <typename T>
Chris@64 45 struct PromiseFulfillerPair;
Chris@64 46
Chris@64 47 template <typename Func, typename T>
Chris@64 48 using PromiseForResult = Promise<_::JoinPromises<_::ReturnType<Func, T>>>;
Chris@64 49 // Evaluates to the type of Promise for the result of calling functor type Func with parameter type
Chris@64 50 // T. If T is void, then the promise is for the result of calling Func with no arguments. If
Chris@64 51 // Func itself returns a promise, the promises are joined, so you never get Promise<Promise<T>>.
Chris@64 52
Chris@64 53 // =======================================================================================
Chris@64 54 // Promises
Chris@64 55
Chris@64 56 template <typename T>
Chris@64 57 class Promise: protected _::PromiseBase {
Chris@64 58 // The basic primitive of asynchronous computation in KJ. Similar to "futures", but designed
Chris@64 59 // specifically for event loop concurrency. Similar to E promises and JavaScript Promises/A.
Chris@64 60 //
Chris@64 61 // A Promise represents a promise to produce a value of type T some time in the future. Once
Chris@64 62 // that value has been produced, the promise is "fulfilled". Alternatively, a promise can be
Chris@64 63 // "broken", with an Exception describing what went wrong. You may implicitly convert a value of
Chris@64 64 // type T to an already-fulfilled Promise<T>. You may implicitly convert the constant
Chris@64 65 // `kj::READY_NOW` to an already-fulfilled Promise<void>. You may also implicitly convert a
Chris@64 66 // `kj::Exception` to an already-broken promise of any type.
Chris@64 67 //
Chris@64 68 // Promises are linear types -- they are moveable but not copyable. If a Promise is destroyed
Chris@64 69 // or goes out of scope (without being moved elsewhere), any ongoing asynchronous operations
Chris@64 70 // meant to fulfill the promise will be canceled if possible. All methods of `Promise` (unless
Chris@64 71 // otherwise noted) actually consume the promise in the sense of move semantics. (Arguably they
Chris@64 72 // should be rvalue-qualified, but at the time this interface was created compilers didn't widely
Chris@64 73 // support that yet and anyway it would be pretty ugly typing kj::mv(promise).whatever().) If
Chris@64 74 // you want to use one Promise in two different places, you must fork it with `fork()`.
Chris@64 75 //
Chris@64 76 // To use the result of a Promise, you must call `then()` and supply a callback function to
Chris@64 77 // call with the result. `then()` returns another promise, for the result of the callback.
Chris@64 78 // Any time that this would result in Promise<Promise<T>>, the promises are collapsed into a
Chris@64 79 // simple Promise<T> that first waits for the outer promise, then the inner. Example:
Chris@64 80 //
Chris@64 81 // // Open a remote file, read the content, and then count the
Chris@64 82 // // number of lines of text.
Chris@64 83 // // Note that none of the calls here block. `file`, `content`
Chris@64 84 // // and `lineCount` are all initialized immediately before any
Chris@64 85 // // asynchronous operations occur. The lambda callbacks are
Chris@64 86 // // called later.
Chris@64 87 // Promise<Own<File>> file = openFtp("ftp://host/foo/bar");
Chris@64 88 // Promise<String> content = file.then(
Chris@64 89 // [](Own<File> file) -> Promise<String> {
Chris@64 90 // return file.readAll();
Chris@64 91 // });
Chris@64 92 // Promise<int> lineCount = content.then(
Chris@64 93 // [](String text) -> int {
Chris@64 94 // uint count = 0;
Chris@64 95 // for (char c: text) count += (c == '\n');
Chris@64 96 // return count;
Chris@64 97 // });
Chris@64 98 //
Chris@64 99 // For `then()` to work, the current thread must have an active `EventLoop`. Each callback
Chris@64 100 // is scheduled to execute in that loop. Since `then()` schedules callbacks only on the current
Chris@64 101 // thread's event loop, you do not need to worry about two callbacks running at the same time.
Chris@64 102 // You will need to set up at least one `EventLoop` at the top level of your program before you
Chris@64 103 // can use promises.
Chris@64 104 //
Chris@64 105 // To adapt a non-Promise-based asynchronous API to promises, use `newAdaptedPromise()`.
Chris@64 106 //
Chris@64 107 // Systems using promises should consider supporting the concept of "pipelining". Pipelining
Chris@64 108 // means allowing a caller to start issuing method calls against a promised object before the
Chris@64 109 // promise has actually been fulfilled. This is particularly useful if the promise is for a
Chris@64 110 // remote object living across a network, as this can avoid round trips when chaining a series
Chris@64 111 // of calls. It is suggested that any class T which supports pipelining implement a subclass of
Chris@64 112 // Promise<T> which adds "eventual send" methods -- methods which, when called, say "please
Chris@64 113 // invoke the corresponding method on the promised value once it is available". These methods
Chris@64 114 // should in turn return promises for the eventual results of said invocations. Cap'n Proto,
Chris@64 115 // for example, implements the type `RemotePromise` which supports pipelining RPC requests -- see
Chris@64 116 // `capnp/capability.h`.
Chris@64 117 //
Chris@64 118 // KJ Promises are based on E promises:
Chris@64 119 // http://wiki.erights.org/wiki/Walnut/Distributed_Computing#Promises
Chris@64 120 //
Chris@64 121 // KJ Promises are also inspired in part by the evolving standards for JavaScript/ECMAScript
Chris@64 122 // promises, which are themselves influenced by E promises:
Chris@64 123 // http://promisesaplus.com/
Chris@64 124 // https://github.com/domenic/promises-unwrapping
Chris@64 125
Chris@64 126 public:
Chris@64 127 Promise(_::FixVoid<T> value);
Chris@64 128 // Construct an already-fulfilled Promise from a value of type T. For non-void promises, the
Chris@64 129 // parameter type is simply T. So, e.g., in a function that returns `Promise<int>`, you can
Chris@64 130 // say `return 123;` to return a promise that is already fulfilled to 123.
Chris@64 131 //
Chris@64 132 // For void promises, use `kj::READY_NOW` as the value, e.g. `return kj::READY_NOW`.
Chris@64 133
Chris@64 134 Promise(kj::Exception&& e);
Chris@64 135 // Construct an already-broken Promise.
Chris@64 136
Chris@64 137 inline Promise(decltype(nullptr)) {}
Chris@64 138
Chris@64 139 template <typename Func, typename ErrorFunc = _::PropagateException>
Chris@64 140 PromiseForResult<Func, T> then(Func&& func, ErrorFunc&& errorHandler = _::PropagateException())
Chris@64 141 KJ_WARN_UNUSED_RESULT;
Chris@64 142 // Register a continuation function to be executed when the promise completes. The continuation
Chris@64 143 // (`func`) takes the promised value (an rvalue of type `T`) as its parameter. The continuation
Chris@64 144 // may return a new value; `then()` itself returns a promise for the continuation's eventual
Chris@64 145 // result. If the continuation itself returns a `Promise<U>`, then `then()` shall also return
Chris@64 146 // a `Promise<U>` which first waits for the original promise, then executes the continuation,
Chris@64 147 // then waits for the inner promise (i.e. it automatically "unwraps" the promise).
Chris@64 148 //
Chris@64 149 // In all cases, `then()` returns immediately. The continuation is executed later. The
Chris@64 150 // continuation is always executed on the same EventLoop (and, therefore, the same thread) which
Chris@64 151 // called `then()`, therefore no synchronization is necessary on state shared by the continuation
Chris@64 152 // and the surrounding scope. If no EventLoop is running on the current thread, `then()` throws
Chris@64 153 // an exception.
Chris@64 154 //
Chris@64 155 // You may also specify an error handler continuation as the second parameter. `errorHandler`
Chris@64 156 // must be a functor taking a parameter of type `kj::Exception&&`. It must return the same
Chris@64 157 // type as `func` returns (except when `func` returns `Promise<U>`, in which case `errorHandler`
Chris@64 158 // may return either `Promise<U>` or just `U`). The default error handler simply propagates the
Chris@64 159 // exception to the returned promise.
Chris@64 160 //
Chris@64 161 // Either `func` or `errorHandler` may, of course, throw an exception, in which case the promise
Chris@64 162 // is broken. When compiled with -fno-exceptions, the framework will still detect when a
Chris@64 163 // recoverable exception was thrown inside of a continuation and will consider the promise
Chris@64 164 // broken even though a (presumably garbage) result was returned.
Chris@64 165 //
Chris@64 166 // If the returned promise is destroyed before the callback runs, the callback will be canceled
Chris@64 167 // (it will never run).
Chris@64 168 //
Chris@64 169 // Note that `then()` -- like all other Promise methods -- consumes the promise on which it is
Chris@64 170 // called, in the sense of move semantics. After returning, the original promise is no longer
Chris@64 171 // valid, but `then()` returns a new promise.
Chris@64 172 //
Chris@64 173 // *Advanced implementation tips:* Most users will never need to worry about the below, but
Chris@64 174 // it is good to be aware of.
Chris@64 175 //
Chris@64 176 // As an optimization, if the callback function `func` does _not_ return another promise, then
Chris@64 177 // execution of `func` itself may be delayed until its result is known to be needed. The
Chris@64 178 // expectation here is that `func` is just doing some transformation on the results, not
Chris@64 179 // scheduling any other actions, therefore the system doesn't need to be proactive about
Chris@64 180 // evaluating it. This way, a chain of trivial then() transformations can be executed all at
Chris@64 181 // once without repeatedly re-scheduling through the event loop. Use the `eagerlyEvaluate()`
Chris@64 182 // method to suppress this behavior.
Chris@64 183 //
Chris@64 184 // On the other hand, if `func` _does_ return another promise, then the system evaluates `func`
Chris@64 185 // as soon as possible, because the promise it returns might be for a newly-scheduled
Chris@64 186 // long-running asynchronous task.
Chris@64 187 //
Chris@64 188 // As another optimization, when a callback function registered with `then()` is actually
Chris@64 189 // scheduled, it is scheduled to occur immediately, preempting other work in the event queue.
Chris@64 190 // This allows a long chain of `then`s to execute all at once, improving cache locality by
Chris@64 191 // clustering operations on the same data. However, this implies that starvation can occur
Chris@64 192 // if a chain of `then()`s takes a very long time to execute without ever stopping to wait for
Chris@64 193 // actual I/O. To solve this, use `kj::evalLater()` to yield control; this way, all other events
Chris@64 194 // in the queue will get a chance to run before your callback is executed.
Chris@64 195
Chris@64 196 Promise<void> ignoreResult() KJ_WARN_UNUSED_RESULT { return then([](T&&) {}); }
Chris@64 197 // Convenience method to convert the promise to a void promise by ignoring the return value.
Chris@64 198 //
Chris@64 199 // You must still wait on the returned promise if you want the task to execute.
Chris@64 200
Chris@64 201 template <typename ErrorFunc>
Chris@64 202 Promise<T> catch_(ErrorFunc&& errorHandler) KJ_WARN_UNUSED_RESULT;
Chris@64 203 // Equivalent to `.then(identityFunc, errorHandler)`, where `identifyFunc` is a function that
Chris@64 204 // just returns its input.
Chris@64 205
Chris@64 206 T wait(WaitScope& waitScope);
Chris@64 207 // Run the event loop until the promise is fulfilled, then return its result. If the promise
Chris@64 208 // is rejected, throw an exception.
Chris@64 209 //
Chris@64 210 // wait() is primarily useful at the top level of a program -- typically, within the function
Chris@64 211 // that allocated the EventLoop. For example, a program that performs one or two RPCs and then
Chris@64 212 // exits would likely use wait() in its main() function to wait on each RPC. On the other hand,
Chris@64 213 // server-side code generally cannot use wait(), because it has to be able to accept multiple
Chris@64 214 // requests at once.
Chris@64 215 //
Chris@64 216 // If the promise is rejected, `wait()` throws an exception. If the program was compiled without
Chris@64 217 // exceptions (-fno-exceptions), this will usually abort. In this case you really should first
Chris@64 218 // use `then()` to set an appropriate handler for the exception case, so that the promise you
Chris@64 219 // actually wait on never throws.
Chris@64 220 //
Chris@64 221 // `waitScope` is an object proving that the caller is in a scope where wait() is allowed. By
Chris@64 222 // convention, any function which might call wait(), or which might call another function which
Chris@64 223 // might call wait(), must take `WaitScope&` as one of its parameters. This is needed for two
Chris@64 224 // reasons:
Chris@64 225 // * `wait()` is not allowed during an event callback, because event callbacks are themselves
Chris@64 226 // called during some other `wait()`, and such recursive `wait()`s would only be able to
Chris@64 227 // complete in LIFO order, which might mean that the outer `wait()` ends up waiting longer
Chris@64 228 // than it is supposed to. To prevent this, a `WaitScope` cannot be constructed or used during
Chris@64 229 // an event callback.
Chris@64 230 // * Since `wait()` runs the event loop, unrelated event callbacks may execute before `wait()`
Chris@64 231 // returns. This means that anyone calling `wait()` must be reentrant -- state may change
Chris@64 232 // around them in arbitrary ways. Therefore, callers really need to know if a function they
Chris@64 233 // are calling might wait(), and the `WaitScope&` parameter makes this clear.
Chris@64 234 //
Chris@64 235 // TODO(someday): Implement fibers, and let them call wait() even when they are handling an
Chris@64 236 // event.
Chris@64 237
Chris@64 238 ForkedPromise<T> fork() KJ_WARN_UNUSED_RESULT;
Chris@64 239 // Forks the promise, so that multiple different clients can independently wait on the result.
Chris@64 240 // `T` must be copy-constructable for this to work. Or, in the special case where `T` is
Chris@64 241 // `Own<U>`, `U` must have a method `Own<U> addRef()` which returns a new reference to the same
Chris@64 242 // (or an equivalent) object (probably implemented via reference counting).
Chris@64 243
Chris@64 244 _::SplitTuplePromise<T> split();
Chris@64 245 // Split a promise for a tuple into a tuple of promises.
Chris@64 246 //
Chris@64 247 // E.g. if you have `Promise<kj::Tuple<T, U>>`, `split()` returns
Chris@64 248 // `kj::Tuple<Promise<T>, Promise<U>>`.
Chris@64 249
Chris@64 250 Promise<T> exclusiveJoin(Promise<T>&& other) KJ_WARN_UNUSED_RESULT;
Chris@64 251 // Return a new promise that resolves when either the original promise resolves or `other`
Chris@64 252 // resolves (whichever comes first). The promise that didn't resolve first is canceled.
Chris@64 253
Chris@64 254 // TODO(someday): inclusiveJoin(), or perhaps just join(), which waits for both completions
Chris@64 255 // and produces a tuple?
Chris@64 256
Chris@64 257 template <typename... Attachments>
Chris@64 258 Promise<T> attach(Attachments&&... attachments) KJ_WARN_UNUSED_RESULT;
Chris@64 259 // "Attaches" one or more movable objects (often, Own<T>s) to the promise, such that they will
Chris@64 260 // be destroyed when the promise resolves. This is useful when a promise's callback contains
Chris@64 261 // pointers into some object and you want to make sure the object still exists when the callback
Chris@64 262 // runs -- after calling then(), use attach() to add necessary objects to the result.
Chris@64 263
Chris@64 264 template <typename ErrorFunc>
Chris@64 265 Promise<T> eagerlyEvaluate(ErrorFunc&& errorHandler) KJ_WARN_UNUSED_RESULT;
Chris@64 266 Promise<T> eagerlyEvaluate(decltype(nullptr)) KJ_WARN_UNUSED_RESULT;
Chris@64 267 // Force eager evaluation of this promise. Use this if you are going to hold on to the promise
Chris@64 268 // for awhile without consuming the result, but you want to make sure that the system actually
Chris@64 269 // processes it.
Chris@64 270 //
Chris@64 271 // `errorHandler` is a function that takes `kj::Exception&&`, like the second parameter to
Chris@64 272 // `then()`, except that it must return void. We make you specify this because otherwise it's
Chris@64 273 // easy to forget to handle errors in a promise that you never use. You may specify nullptr for
Chris@64 274 // the error handler if you are sure that ignoring errors is fine, or if you know that you'll
Chris@64 275 // eventually wait on the promise somewhere.
Chris@64 276
Chris@64 277 template <typename ErrorFunc>
Chris@64 278 void detach(ErrorFunc&& errorHandler);
Chris@64 279 // Allows the promise to continue running in the background until it completes or the
Chris@64 280 // `EventLoop` is destroyed. Be careful when using this: since you can no longer cancel this
Chris@64 281 // promise, you need to make sure that the promise owns all the objects it touches or make sure
Chris@64 282 // those objects outlive the EventLoop.
Chris@64 283 //
Chris@64 284 // `errorHandler` is a function that takes `kj::Exception&&`, like the second parameter to
Chris@64 285 // `then()`, except that it must return void.
Chris@64 286 //
Chris@64 287 // This function exists mainly to implement the Cap'n Proto requirement that RPC calls cannot be
Chris@64 288 // canceled unless the callee explicitly permits it.
Chris@64 289
Chris@64 290 kj::String trace();
Chris@64 291 // Returns a dump of debug info about this promise. Not for production use. Requires RTTI.
Chris@64 292 // This method does NOT consume the promise as other methods do.
Chris@64 293
Chris@64 294 private:
Chris@64 295 Promise(bool, Own<_::PromiseNode>&& node): PromiseBase(kj::mv(node)) {}
Chris@64 296 // Second parameter prevent ambiguity with immediate-value constructor.
Chris@64 297
Chris@64 298 template <typename>
Chris@64 299 friend class Promise;
Chris@64 300 friend class EventLoop;
Chris@64 301 template <typename U, typename Adapter, typename... Params>
Chris@64 302 friend Promise<U> newAdaptedPromise(Params&&... adapterConstructorParams);
Chris@64 303 template <typename U>
Chris@64 304 friend PromiseFulfillerPair<U> newPromiseAndFulfiller();
Chris@64 305 template <typename>
Chris@64 306 friend class _::ForkHub;
Chris@64 307 friend class _::TaskSetImpl;
Chris@64 308 friend Promise<void> _::yield();
Chris@64 309 friend class _::NeverDone;
Chris@64 310 template <typename U>
Chris@64 311 friend Promise<Array<U>> joinPromises(Array<Promise<U>>&& promises);
Chris@64 312 friend Promise<void> joinPromises(Array<Promise<void>>&& promises);
Chris@64 313 };
Chris@64 314
Chris@64 315 template <typename T>
Chris@64 316 class ForkedPromise {
Chris@64 317 // The result of `Promise::fork()` and `EventLoop::fork()`. Allows branches to be created.
Chris@64 318 // Like `Promise<T>`, this is a pass-by-move type.
Chris@64 319
Chris@64 320 public:
Chris@64 321 inline ForkedPromise(decltype(nullptr)) {}
Chris@64 322
Chris@64 323 Promise<T> addBranch();
Chris@64 324 // Add a new branch to the fork. The branch is equivalent to the original promise.
Chris@64 325
Chris@64 326 private:
Chris@64 327 Own<_::ForkHub<_::FixVoid<T>>> hub;
Chris@64 328
Chris@64 329 inline ForkedPromise(bool, Own<_::ForkHub<_::FixVoid<T>>>&& hub): hub(kj::mv(hub)) {}
Chris@64 330
Chris@64 331 friend class Promise<T>;
Chris@64 332 friend class EventLoop;
Chris@64 333 };
Chris@64 334
Chris@64 335 constexpr _::Void READY_NOW = _::Void();
Chris@64 336 // Use this when you need a Promise<void> that is already fulfilled -- this value can be implicitly
Chris@64 337 // cast to `Promise<void>`.
Chris@64 338
Chris@64 339 constexpr _::NeverDone NEVER_DONE = _::NeverDone();
Chris@64 340 // The opposite of `READY_NOW`, return this when the promise should never resolve. This can be
Chris@64 341 // implicitly converted to any promise type. You may also call `NEVER_DONE.wait()` to wait
Chris@64 342 // forever (useful for servers).
Chris@64 343
Chris@64 344 template <typename Func>
Chris@64 345 PromiseForResult<Func, void> evalLater(Func&& func) KJ_WARN_UNUSED_RESULT;
Chris@64 346 // Schedule for the given zero-parameter function to be executed in the event loop at some
Chris@64 347 // point in the near future. Returns a Promise for its result -- or, if `func()` itself returns
Chris@64 348 // a promise, `evalLater()` returns a Promise for the result of resolving that promise.
Chris@64 349 //
Chris@64 350 // Example usage:
Chris@64 351 // Promise<int> x = evalLater([]() { return 123; });
Chris@64 352 //
Chris@64 353 // The above is exactly equivalent to:
Chris@64 354 // Promise<int> x = Promise<void>(READY_NOW).then([]() { return 123; });
Chris@64 355 //
Chris@64 356 // If the returned promise is destroyed before the callback runs, the callback will be canceled
Chris@64 357 // (never called).
Chris@64 358 //
Chris@64 359 // If you schedule several evaluations with `evalLater` during the same callback, they are
Chris@64 360 // guaranteed to be executed in order.
Chris@64 361
Chris@64 362 template <typename Func>
Chris@64 363 PromiseForResult<Func, void> evalNow(Func&& func) KJ_WARN_UNUSED_RESULT;
Chris@64 364 // Run `func()` and return a promise for its result. `func()` executes before `evalNow()` returns.
Chris@64 365 // If `func()` throws an exception, the exception is caught and wrapped in a promise -- this is the
Chris@64 366 // main reason why `evalNow()` is useful.
Chris@64 367
Chris@64 368 template <typename T>
Chris@64 369 Promise<Array<T>> joinPromises(Array<Promise<T>>&& promises);
Chris@64 370 // Join an array of promises into a promise for an array.
Chris@64 371
Chris@64 372 // =======================================================================================
Chris@64 373 // Hack for creating a lambda that holds an owned pointer.
Chris@64 374
Chris@64 375 template <typename Func, typename MovedParam>
Chris@64 376 class CaptureByMove {
Chris@64 377 public:
Chris@64 378 inline CaptureByMove(Func&& func, MovedParam&& param)
Chris@64 379 : func(kj::mv(func)), param(kj::mv(param)) {}
Chris@64 380
Chris@64 381 template <typename... Params>
Chris@64 382 inline auto operator()(Params&&... params)
Chris@64 383 -> decltype(kj::instance<Func>()(kj::instance<MovedParam&&>(), kj::fwd<Params>(params)...)) {
Chris@64 384 return func(kj::mv(param), kj::fwd<Params>(params)...);
Chris@64 385 }
Chris@64 386
Chris@64 387 private:
Chris@64 388 Func func;
Chris@64 389 MovedParam param;
Chris@64 390 };
Chris@64 391
Chris@64 392 template <typename Func, typename MovedParam>
Chris@64 393 inline CaptureByMove<Func, Decay<MovedParam>> mvCapture(MovedParam&& param, Func&& func) {
Chris@64 394 // Hack to create a "lambda" which captures a variable by moving it rather than copying or
Chris@64 395 // referencing. C++14 generalized captures should make this obsolete, but for now in C++11 this
Chris@64 396 // is commonly needed for Promise continuations that own their state. Example usage:
Chris@64 397 //
Chris@64 398 // Own<Foo> ptr = makeFoo();
Chris@64 399 // Promise<int> promise = callRpc();
Chris@64 400 // promise.then(mvCapture(ptr, [](Own<Foo>&& ptr, int result) {
Chris@64 401 // return ptr->finish(result);
Chris@64 402 // }));
Chris@64 403
Chris@64 404 return CaptureByMove<Func, Decay<MovedParam>>(kj::fwd<Func>(func), kj::mv(param));
Chris@64 405 }
Chris@64 406
Chris@64 407 // =======================================================================================
Chris@64 408 // Advanced promise construction
Chris@64 409
Chris@64 410 template <typename T>
Chris@64 411 class PromiseFulfiller {
Chris@64 412 // A callback which can be used to fulfill a promise. Only the first call to fulfill() or
Chris@64 413 // reject() matters; subsequent calls are ignored.
Chris@64 414
Chris@64 415 public:
Chris@64 416 virtual void fulfill(T&& value) = 0;
Chris@64 417 // Fulfill the promise with the given value.
Chris@64 418
Chris@64 419 virtual void reject(Exception&& exception) = 0;
Chris@64 420 // Reject the promise with an error.
Chris@64 421
Chris@64 422 virtual bool isWaiting() = 0;
Chris@64 423 // Returns true if the promise is still unfulfilled and someone is potentially waiting for it.
Chris@64 424 // Returns false if fulfill()/reject() has already been called *or* if the promise to be
Chris@64 425 // fulfilled has been discarded and therefore the result will never be used anyway.
Chris@64 426
Chris@64 427 template <typename Func>
Chris@64 428 bool rejectIfThrows(Func&& func);
Chris@64 429 // Call the function (with no arguments) and return true. If an exception is thrown, call
Chris@64 430 // `fulfiller.reject()` and then return false. When compiled with exceptions disabled,
Chris@64 431 // non-fatal exceptions are still detected and handled correctly.
Chris@64 432 };
Chris@64 433
Chris@64 434 template <>
Chris@64 435 class PromiseFulfiller<void> {
Chris@64 436 // Specialization of PromiseFulfiller for void promises. See PromiseFulfiller<T>.
Chris@64 437
Chris@64 438 public:
Chris@64 439 virtual void fulfill(_::Void&& value = _::Void()) = 0;
Chris@64 440 // Call with zero parameters. The parameter is a dummy that only exists so that subclasses don't
Chris@64 441 // have to specialize for <void>.
Chris@64 442
Chris@64 443 virtual void reject(Exception&& exception) = 0;
Chris@64 444 virtual bool isWaiting() = 0;
Chris@64 445
Chris@64 446 template <typename Func>
Chris@64 447 bool rejectIfThrows(Func&& func);
Chris@64 448 };
Chris@64 449
Chris@64 450 template <typename T, typename Adapter, typename... Params>
Chris@64 451 Promise<T> newAdaptedPromise(Params&&... adapterConstructorParams);
Chris@64 452 // Creates a new promise which owns an instance of `Adapter` which encapsulates the operation
Chris@64 453 // that will eventually fulfill the promise. This is primarily useful for adapting non-KJ
Chris@64 454 // asynchronous APIs to use promises.
Chris@64 455 //
Chris@64 456 // An instance of `Adapter` will be allocated and owned by the returned `Promise`. A
Chris@64 457 // `PromiseFulfiller<T>&` will be passed as the first parameter to the adapter's constructor,
Chris@64 458 // and `adapterConstructorParams` will be forwarded as the subsequent parameters. The adapter
Chris@64 459 // is expected to perform some asynchronous operation and call the `PromiseFulfiller<T>` once
Chris@64 460 // it is finished.
Chris@64 461 //
Chris@64 462 // The adapter is destroyed when its owning Promise is destroyed. This may occur before the
Chris@64 463 // Promise has been fulfilled. In this case, the adapter's destructor should cancel the
Chris@64 464 // asynchronous operation. Once the adapter is destroyed, the fulfillment callback cannot be
Chris@64 465 // called.
Chris@64 466 //
Chris@64 467 // An adapter implementation should be carefully written to ensure that it cannot accidentally
Chris@64 468 // be left unfulfilled permanently because of an exception. Consider making liberal use of
Chris@64 469 // `PromiseFulfiller<T>::rejectIfThrows()`.
Chris@64 470
Chris@64 471 template <typename T>
Chris@64 472 struct PromiseFulfillerPair {
Chris@64 473 Promise<_::JoinPromises<T>> promise;
Chris@64 474 Own<PromiseFulfiller<T>> fulfiller;
Chris@64 475 };
Chris@64 476
Chris@64 477 template <typename T>
Chris@64 478 PromiseFulfillerPair<T> newPromiseAndFulfiller();
Chris@64 479 // Construct a Promise and a separate PromiseFulfiller which can be used to fulfill the promise.
Chris@64 480 // If the PromiseFulfiller is destroyed before either of its methods are called, the Promise is
Chris@64 481 // implicitly rejected.
Chris@64 482 //
Chris@64 483 // Although this function is easier to use than `newAdaptedPromise()`, it has the serious drawback
Chris@64 484 // that there is no way to handle cancellation (i.e. detect when the Promise is discarded).
Chris@64 485 //
Chris@64 486 // You can arrange to fulfill a promise with another promise by using a promise type for T. E.g.
Chris@64 487 // `newPromiseAndFulfiller<Promise<U>>()` will produce a promise of type `Promise<U>` but the
Chris@64 488 // fulfiller will be of type `PromiseFulfiller<Promise<U>>`. Thus you pass a `Promise<U>` to the
Chris@64 489 // `fulfill()` callback, and the promises are chained.
Chris@64 490
Chris@64 491 // =======================================================================================
Chris@64 492 // TaskSet
Chris@64 493
Chris@64 494 class TaskSet {
Chris@64 495 // Holds a collection of Promise<void>s and ensures that each executes to completion. Memory
Chris@64 496 // associated with each promise is automatically freed when the promise completes. Destroying
Chris@64 497 // the TaskSet itself automatically cancels all unfinished promises.
Chris@64 498 //
Chris@64 499 // This is useful for "daemon" objects that perform background tasks which aren't intended to
Chris@64 500 // fulfill any particular external promise, but which may need to be canceled (and thus can't
Chris@64 501 // use `Promise::detach()`). The daemon object holds a TaskSet to collect these tasks it is
Chris@64 502 // working on. This way, if the daemon itself is destroyed, the TaskSet is detroyed as well,
Chris@64 503 // and everything the daemon is doing is canceled.
Chris@64 504
Chris@64 505 public:
Chris@64 506 class ErrorHandler {
Chris@64 507 public:
Chris@64 508 virtual void taskFailed(kj::Exception&& exception) = 0;
Chris@64 509 };
Chris@64 510
Chris@64 511 TaskSet(ErrorHandler& errorHandler);
Chris@64 512 // `loop` will be used to wait on promises. `errorHandler` will be executed any time a task
Chris@64 513 // throws an exception, and will execute within the given EventLoop.
Chris@64 514
Chris@64 515 ~TaskSet() noexcept(false);
Chris@64 516
Chris@64 517 void add(Promise<void>&& promise);
Chris@64 518
Chris@64 519 kj::String trace();
Chris@64 520 // Return debug info about all promises currently in the TaskSet.
Chris@64 521
Chris@64 522 private:
Chris@64 523 Own<_::TaskSetImpl> impl;
Chris@64 524 };
Chris@64 525
Chris@64 526 // =======================================================================================
Chris@64 527 // The EventLoop class
Chris@64 528
Chris@64 529 class EventPort {
Chris@64 530 // Interfaces between an `EventLoop` and events originating from outside of the loop's thread.
Chris@64 531 // All such events come in through the `EventPort` implementation.
Chris@64 532 //
Chris@64 533 // An `EventPort` implementation may interface with low-level operating system APIs and/or other
Chris@64 534 // threads. You can also write an `EventPort` which wraps some other (non-KJ) event loop
Chris@64 535 // framework, allowing the two to coexist in a single thread.
Chris@64 536
Chris@64 537 public:
Chris@64 538 virtual bool wait() = 0;
Chris@64 539 // Wait for an external event to arrive, sleeping if necessary. Once at least one event has
Chris@64 540 // arrived, queue it to the event loop (e.g. by fulfilling a promise) and return.
Chris@64 541 //
Chris@64 542 // This is called during `Promise::wait()` whenever the event queue becomes empty, in order to
Chris@64 543 // wait for new events to populate the queue.
Chris@64 544 //
Chris@64 545 // It is safe to return even if nothing has actually been queued, so long as calling `wait()` in
Chris@64 546 // a loop will eventually sleep. (That is to say, false positives are fine.)
Chris@64 547 //
Chris@64 548 // Returns true if wake() has been called from another thread. (Precisely, returns true if
Chris@64 549 // no previous call to wait `wait()` nor `poll()` has returned true since `wake()` was last
Chris@64 550 // called.)
Chris@64 551
Chris@64 552 virtual bool poll() = 0;
Chris@64 553 // Check if any external events have arrived, but do not sleep. If any events have arrived,
Chris@64 554 // add them to the event queue (e.g. by fulfilling promises) before returning.
Chris@64 555 //
Chris@64 556 // This may be called during `Promise::wait()` when the EventLoop has been executing for a while
Chris@64 557 // without a break but is still non-empty.
Chris@64 558 //
Chris@64 559 // Returns true if wake() has been called from another thread. (Precisely, returns true if
Chris@64 560 // no previous call to wait `wait()` nor `poll()` has returned true since `wake()` was last
Chris@64 561 // called.)
Chris@64 562
Chris@64 563 virtual void setRunnable(bool runnable);
Chris@64 564 // Called to notify the `EventPort` when the `EventLoop` has work to do; specifically when it
Chris@64 565 // transitions from empty -> runnable or runnable -> empty. This is typically useful when
Chris@64 566 // integrating with an external event loop; if the loop is currently runnable then you should
Chris@64 567 // arrange to call run() on it soon. The default implementation does nothing.
Chris@64 568
Chris@64 569 virtual void wake() const;
Chris@64 570 // Wake up the EventPort's thread from another thread.
Chris@64 571 //
Chris@64 572 // Unlike all other methods on this interface, `wake()` may be called from another thread, hence
Chris@64 573 // it is `const`.
Chris@64 574 //
Chris@64 575 // Technically speaking, `wake()` causes the target thread to cease sleeping and not to sleep
Chris@64 576 // again until `wait()` or `poll()` has returned true at least once.
Chris@64 577 //
Chris@64 578 // The default implementation throws an UNIMPLEMENTED exception.
Chris@64 579 };
Chris@64 580
Chris@64 581 class EventLoop {
Chris@64 582 // Represents a queue of events being executed in a loop. Most code won't interact with
Chris@64 583 // EventLoop directly, but instead use `Promise`s to interact with it indirectly. See the
Chris@64 584 // documentation for `Promise`.
Chris@64 585 //
Chris@64 586 // Each thread can have at most one current EventLoop. To make an `EventLoop` current for
Chris@64 587 // the thread, create a `WaitScope`. Async APIs require that the thread has a current EventLoop,
Chris@64 588 // or they will throw exceptions. APIs that use `Promise::wait()` additionally must explicitly
Chris@64 589 // be passed a reference to the `WaitScope` to make the caller aware that they might block.
Chris@64 590 //
Chris@64 591 // Generally, you will want to construct an `EventLoop` at the top level of your program, e.g.
Chris@64 592 // in the main() function, or in the start function of a thread. You can then use it to
Chris@64 593 // construct some promises and wait on the result. Example:
Chris@64 594 //
Chris@64 595 // int main() {
Chris@64 596 // // `loop` becomes the official EventLoop for the thread.
Chris@64 597 // MyEventPort eventPort;
Chris@64 598 // EventLoop loop(eventPort);
Chris@64 599 //
Chris@64 600 // // Now we can call an async function.
Chris@64 601 // Promise<String> textPromise = getHttp("http://example.com");
Chris@64 602 //
Chris@64 603 // // And we can wait for the promise to complete. Note that you can only use `wait()`
Chris@64 604 // // from the top level, not from inside a promise callback.
Chris@64 605 // String text = textPromise.wait();
Chris@64 606 // print(text);
Chris@64 607 // return 0;
Chris@64 608 // }
Chris@64 609 //
Chris@64 610 // Most applications that do I/O will prefer to use `setupAsyncIo()` from `async-io.h` rather
Chris@64 611 // than allocate an `EventLoop` directly.
Chris@64 612
Chris@64 613 public:
Chris@64 614 EventLoop();
Chris@64 615 // Construct an `EventLoop` which does not receive external events at all.
Chris@64 616
Chris@64 617 explicit EventLoop(EventPort& port);
Chris@64 618 // Construct an `EventLoop` which receives external events through the given `EventPort`.
Chris@64 619
Chris@64 620 ~EventLoop() noexcept(false);
Chris@64 621
Chris@64 622 void run(uint maxTurnCount = maxValue);
Chris@64 623 // Run the event loop for `maxTurnCount` turns or until there is nothing left to be done,
Chris@64 624 // whichever comes first. This never calls the `EventPort`'s `sleep()` or `poll()`. It will
Chris@64 625 // call the `EventPort`'s `setRunnable(false)` if the queue becomes empty.
Chris@64 626
Chris@64 627 bool isRunnable();
Chris@64 628 // Returns true if run() would currently do anything, or false if the queue is empty.
Chris@64 629
Chris@64 630 private:
Chris@64 631 EventPort& port;
Chris@64 632
Chris@64 633 bool running = false;
Chris@64 634 // True while looping -- wait() is then not allowed.
Chris@64 635
Chris@64 636 bool lastRunnableState = false;
Chris@64 637 // What did we last pass to port.setRunnable()?
Chris@64 638
Chris@64 639 _::Event* head = nullptr;
Chris@64 640 _::Event** tail = &head;
Chris@64 641 _::Event** depthFirstInsertPoint = &head;
Chris@64 642
Chris@64 643 Own<_::TaskSetImpl> daemons;
Chris@64 644
Chris@64 645 bool turn();
Chris@64 646 void setRunnable(bool runnable);
Chris@64 647 void enterScope();
Chris@64 648 void leaveScope();
Chris@64 649
Chris@64 650 friend void _::detach(kj::Promise<void>&& promise);
Chris@64 651 friend void _::waitImpl(Own<_::PromiseNode>&& node, _::ExceptionOrValue& result,
Chris@64 652 WaitScope& waitScope);
Chris@64 653 friend class _::Event;
Chris@64 654 friend class WaitScope;
Chris@64 655 };
Chris@64 656
Chris@64 657 class WaitScope {
Chris@64 658 // Represents a scope in which asynchronous programming can occur. A `WaitScope` should usually
Chris@64 659 // be allocated on the stack and serves two purposes:
Chris@64 660 // * While the `WaitScope` exists, its `EventLoop` is registered as the current loop for the
Chris@64 661 // thread. Most operations dealing with `Promise` (including all of its methods) do not work
Chris@64 662 // unless the thread has a current `EventLoop`.
Chris@64 663 // * `WaitScope` may be passed to `Promise::wait()` to synchronously wait for a particular
Chris@64 664 // promise to complete. See `Promise::wait()` for an extended discussion.
Chris@64 665
Chris@64 666 public:
Chris@64 667 inline explicit WaitScope(EventLoop& loop): loop(loop) { loop.enterScope(); }
Chris@64 668 inline ~WaitScope() { loop.leaveScope(); }
Chris@64 669 KJ_DISALLOW_COPY(WaitScope);
Chris@64 670
Chris@64 671 private:
Chris@64 672 EventLoop& loop;
Chris@64 673 friend class EventLoop;
Chris@64 674 friend void _::waitImpl(Own<_::PromiseNode>&& node, _::ExceptionOrValue& result,
Chris@64 675 WaitScope& waitScope);
Chris@64 676 };
Chris@64 677
Chris@64 678 } // namespace kj
Chris@64 679
Chris@64 680 #include "async-inl.h"
Chris@64 681
Chris@64 682 #endif // KJ_ASYNC_H_