annotate src/fftw-3.3.5/dft/simd/common/q1bv_5.c @ 129:90a976269628

Updated MSVC
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 15:58:42 +0100
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:45:28 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-dft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_twidsq_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1bv_5 -include q1b.h -sign 1 */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 100 FP additions, 95 FP multiplications,
cannam@127 32 * (or, 55 additions, 50 multiplications, 45 fused multiply/add),
cannam@127 33 * 69 stack variables, 4 constants, and 50 memory accesses
cannam@127 34 */
cannam@127 35 #include "q1b.h"
cannam@127 36
cannam@127 37 static void q1bv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@127 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@127 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@127 43 {
cannam@127 44 INT m;
cannam@127 45 R *x;
cannam@127 46 x = ii;
cannam@127 47 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) {
cannam@127 48 V Te, T1w, Ty, TS, TW, Tb, T1t, Tv, T1g, T1c, TP, TV, T1f, T19, TY;
cannam@127 49 V TX;
cannam@127 50 {
cannam@127 51 V T1, T1j, Tl, Ti, Ta, T8, T1A, T1q, T1s, T9, TF, T1r, TZ, TR, TL;
cannam@127 52 V TC, Ts, Tu, TQ, TI, T15, T1b, T10, T11, Tt;
cannam@127 53 {
cannam@127 54 V T1n, T1o, T1k, T1l, T7, Td, T4, Tc;
cannam@127 55 {
cannam@127 56 V T5, T6, T2, T3;
cannam@127 57 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@127 58 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 59 T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 60 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 61 T3 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 62 T1j = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)]));
cannam@127 63 T1n = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)]));
cannam@127 64 T1o = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
cannam@127 65 T1k = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
cannam@127 66 T1l = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)]));
cannam@127 67 T7 = VADD(T5, T6);
cannam@127 68 Td = VSUB(T5, T6);
cannam@127 69 T4 = VADD(T2, T3);
cannam@127 70 Tc = VSUB(T2, T3);
cannam@127 71 }
cannam@127 72 {
cannam@127 73 V Tm, Tn, Tr, Tx, T1v, T1p;
cannam@127 74 Tl = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
cannam@127 75 T1v = VSUB(T1n, T1o);
cannam@127 76 T1p = VADD(T1n, T1o);
cannam@127 77 {
cannam@127 78 V T1u, T1m, Tp, Tq;
cannam@127 79 T1u = VSUB(T1k, T1l);
cannam@127 80 T1m = VADD(T1k, T1l);
cannam@127 81 Tp = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
cannam@127 82 Ti = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tc, Td));
cannam@127 83 Te = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Td, Tc));
cannam@127 84 Ta = VSUB(T4, T7);
cannam@127 85 T8 = VADD(T4, T7);
cannam@127 86 Tq = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@127 87 T1w = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1v, T1u));
cannam@127 88 T1A = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1u, T1v));
cannam@127 89 T1q = VADD(T1m, T1p);
cannam@127 90 T1s = VSUB(T1m, T1p);
cannam@127 91 Tm = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@127 92 T9 = VFNMS(LDK(KP250000000), T8, T1);
cannam@127 93 Tn = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)]));
cannam@127 94 Tr = VADD(Tp, Tq);
cannam@127 95 Tx = VSUB(Tp, Tq);
cannam@127 96 }
cannam@127 97 {
cannam@127 98 V TJ, TK, TG, Tw, To, TH, T13, T14;
cannam@127 99 TF = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
cannam@127 100 T1r = VFNMS(LDK(KP250000000), T1q, T1j);
cannam@127 101 TJ = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
cannam@127 102 TK = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@127 103 TG = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@127 104 Tw = VSUB(Tm, Tn);
cannam@127 105 To = VADD(Tm, Tn);
cannam@127 106 TH = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)]));
cannam@127 107 TZ = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
cannam@127 108 T13 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
cannam@127 109 T14 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@127 110 TR = VSUB(TJ, TK);
cannam@127 111 TL = VADD(TJ, TK);
cannam@127 112 Ty = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tx, Tw));
cannam@127 113 TC = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tw, Tx));
cannam@127 114 Ts = VADD(To, Tr);
cannam@127 115 Tu = VSUB(To, Tr);
cannam@127 116 TQ = VSUB(TG, TH);
cannam@127 117 TI = VADD(TG, TH);
cannam@127 118 T15 = VADD(T13, T14);
cannam@127 119 T1b = VSUB(T13, T14);
cannam@127 120 T10 = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@127 121 T11 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)]));
cannam@127 122 Tt = VFNMS(LDK(KP250000000), Ts, Tl);
cannam@127 123 }
cannam@127 124 }
cannam@127 125 }
cannam@127 126 {
cannam@127 127 V TO, T12, T1a, Th, T1z, TN, TM, T18, T17;
cannam@127 128 ST(&(x[0]), VADD(T1, T8), ms, &(x[0]));
cannam@127 129 TS = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TR, TQ));
cannam@127 130 TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TQ, TR));
cannam@127 131 TM = VADD(TI, TL);
cannam@127 132 TO = VSUB(TI, TL);
cannam@127 133 ST(&(x[WS(rs, 4)]), VADD(T1j, T1q), ms, &(x[0]));
cannam@127 134 T12 = VADD(T10, T11);
cannam@127 135 T1a = VSUB(T10, T11);
cannam@127 136 ST(&(x[WS(rs, 1)]), VADD(Tl, Ts), ms, &(x[WS(rs, 1)]));
cannam@127 137 Th = VFNMS(LDK(KP559016994), Ta, T9);
cannam@127 138 Tb = VFMA(LDK(KP559016994), Ta, T9);
cannam@127 139 T1t = VFMA(LDK(KP559016994), T1s, T1r);
cannam@127 140 T1z = VFNMS(LDK(KP559016994), T1s, T1r);
cannam@127 141 ST(&(x[WS(rs, 2)]), VADD(TF, TM), ms, &(x[0]));
cannam@127 142 TN = VFNMS(LDK(KP250000000), TM, TF);
cannam@127 143 {
cannam@127 144 V T16, Tk, Tj, T1C, T1B, TD, TE, TB;
cannam@127 145 TB = VFNMS(LDK(KP559016994), Tu, Tt);
cannam@127 146 Tv = VFMA(LDK(KP559016994), Tu, Tt);
cannam@127 147 T1g = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1a, T1b));
cannam@127 148 T1c = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1b, T1a));
cannam@127 149 T18 = VSUB(T12, T15);
cannam@127 150 T16 = VADD(T12, T15);
cannam@127 151 Tk = BYTW(&(W[TWVL * 4]), VFMAI(Ti, Th));
cannam@127 152 Tj = BYTW(&(W[TWVL * 2]), VFNMSI(Ti, Th));
cannam@127 153 T1C = BYTW(&(W[TWVL * 4]), VFMAI(T1A, T1z));
cannam@127 154 T1B = BYTW(&(W[TWVL * 2]), VFNMSI(T1A, T1z));
cannam@127 155 TD = BYTW(&(W[TWVL * 2]), VFNMSI(TC, TB));
cannam@127 156 TE = BYTW(&(W[TWVL * 4]), VFMAI(TC, TB));
cannam@127 157 ST(&(x[WS(rs, 3)]), VADD(TZ, T16), ms, &(x[WS(rs, 1)]));
cannam@127 158 T17 = VFNMS(LDK(KP250000000), T16, TZ);
cannam@127 159 ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)]));
cannam@127 160 ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)]));
cannam@127 161 ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)]));
cannam@127 162 ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)]));
cannam@127 163 ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@127 164 ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@127 165 }
cannam@127 166 TP = VFMA(LDK(KP559016994), TO, TN);
cannam@127 167 TV = VFNMS(LDK(KP559016994), TO, TN);
cannam@127 168 T1f = VFNMS(LDK(KP559016994), T18, T17);
cannam@127 169 T19 = VFMA(LDK(KP559016994), T18, T17);
cannam@127 170 }
cannam@127 171 }
cannam@127 172 TY = BYTW(&(W[TWVL * 4]), VFMAI(TW, TV));
cannam@127 173 TX = BYTW(&(W[TWVL * 2]), VFNMSI(TW, TV));
cannam@127 174 {
cannam@127 175 V T1i, T1h, TU, TT;
cannam@127 176 T1i = BYTW(&(W[TWVL * 4]), VFMAI(T1g, T1f));
cannam@127 177 T1h = BYTW(&(W[TWVL * 2]), VFNMSI(T1g, T1f));
cannam@127 178 TU = BYTW(&(W[TWVL * 6]), VFNMSI(TS, TP));
cannam@127 179 TT = BYTW(&(W[0]), VFMAI(TS, TP));
cannam@127 180 {
cannam@127 181 V Tg, Tf, TA, Tz;
cannam@127 182 Tg = BYTW(&(W[TWVL * 6]), VFNMSI(Te, Tb));
cannam@127 183 Tf = BYTW(&(W[0]), VFMAI(Te, Tb));
cannam@127 184 TA = BYTW(&(W[TWVL * 6]), VFNMSI(Ty, Tv));
cannam@127 185 Tz = BYTW(&(W[0]), VFMAI(Ty, Tv));
cannam@127 186 {
cannam@127 187 V T1e, T1d, T1y, T1x;
cannam@127 188 T1e = BYTW(&(W[TWVL * 6]), VFNMSI(T1c, T19));
cannam@127 189 T1d = BYTW(&(W[0]), VFMAI(T1c, T19));
cannam@127 190 T1y = BYTW(&(W[TWVL * 6]), VFNMSI(T1w, T1t));
cannam@127 191 T1x = BYTW(&(W[0]), VFMAI(T1w, T1t));
cannam@127 192 ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)]));
cannam@127 193 ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)]));
cannam@127 194 ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@127 195 ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@127 196 ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)]));
cannam@127 197 ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)]));
cannam@127 198 ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)]));
cannam@127 199 ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)]));
cannam@127 200 ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
cannam@127 201 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@127 202 ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
cannam@127 203 ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@127 204 ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)]));
cannam@127 205 ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)]));
cannam@127 206 }
cannam@127 207 }
cannam@127 208 }
cannam@127 209 }
cannam@127 210 }
cannam@127 211 VLEAVE();
cannam@127 212 }
cannam@127 213
cannam@127 214 static const tw_instr twinstr[] = {
cannam@127 215 VTW(0, 1),
cannam@127 216 VTW(0, 2),
cannam@127 217 VTW(0, 3),
cannam@127 218 VTW(0, 4),
cannam@127 219 {TW_NEXT, VL, 0}
cannam@127 220 };
cannam@127 221
cannam@127 222 static const ct_desc desc = { 5, XSIMD_STRING("q1bv_5"), twinstr, &GENUS, {55, 50, 45, 0}, 0, 0, 0 };
cannam@127 223
cannam@127 224 void XSIMD(codelet_q1bv_5) (planner *p) {
cannam@127 225 X(kdft_difsq_register) (p, q1bv_5, &desc);
cannam@127 226 }
cannam@127 227 #else /* HAVE_FMA */
cannam@127 228
cannam@127 229 /* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1bv_5 -include q1b.h -sign 1 */
cannam@127 230
cannam@127 231 /*
cannam@127 232 * This function contains 100 FP additions, 70 FP multiplications,
cannam@127 233 * (or, 85 additions, 55 multiplications, 15 fused multiply/add),
cannam@127 234 * 44 stack variables, 4 constants, and 50 memory accesses
cannam@127 235 */
cannam@127 236 #include "q1b.h"
cannam@127 237
cannam@127 238 static void q1bv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
cannam@127 239 {
cannam@127 240 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 241 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@127 242 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@127 243 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@127 244 {
cannam@127 245 INT m;
cannam@127 246 R *x;
cannam@127 247 x = ii;
cannam@127 248 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) {
cannam@127 249 V Tb, T7, Th, Ta, Tc, Td, T1t, T1p, T1z, T1s, T1u, T1v, Tv, Tr, TB;
cannam@127 250 V Tu, Tw, Tx, TP, TL, TV, TO, TQ, TR, T19, T15, T1f, T18, T1a, T1b;
cannam@127 251 {
cannam@127 252 V T6, T9, T3, T8;
cannam@127 253 Tb = LD(&(x[0]), ms, &(x[0]));
cannam@127 254 {
cannam@127 255 V T4, T5, T1, T2;
cannam@127 256 T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 257 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 258 T6 = VSUB(T4, T5);
cannam@127 259 T9 = VADD(T4, T5);
cannam@127 260 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 261 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 262 T3 = VSUB(T1, T2);
cannam@127 263 T8 = VADD(T1, T2);
cannam@127 264 }
cannam@127 265 T7 = VBYI(VFMA(LDK(KP951056516), T3, VMUL(LDK(KP587785252), T6)));
cannam@127 266 Th = VBYI(VFNMS(LDK(KP951056516), T6, VMUL(LDK(KP587785252), T3)));
cannam@127 267 Ta = VMUL(LDK(KP559016994), VSUB(T8, T9));
cannam@127 268 Tc = VADD(T8, T9);
cannam@127 269 Td = VFNMS(LDK(KP250000000), Tc, Tb);
cannam@127 270 }
cannam@127 271 {
cannam@127 272 V T1o, T1r, T1l, T1q;
cannam@127 273 T1t = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)]));
cannam@127 274 {
cannam@127 275 V T1m, T1n, T1j, T1k;
cannam@127 276 T1m = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)]));
cannam@127 277 T1n = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
cannam@127 278 T1o = VSUB(T1m, T1n);
cannam@127 279 T1r = VADD(T1m, T1n);
cannam@127 280 T1j = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
cannam@127 281 T1k = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)]));
cannam@127 282 T1l = VSUB(T1j, T1k);
cannam@127 283 T1q = VADD(T1j, T1k);
cannam@127 284 }
cannam@127 285 T1p = VBYI(VFMA(LDK(KP951056516), T1l, VMUL(LDK(KP587785252), T1o)));
cannam@127 286 T1z = VBYI(VFNMS(LDK(KP951056516), T1o, VMUL(LDK(KP587785252), T1l)));
cannam@127 287 T1s = VMUL(LDK(KP559016994), VSUB(T1q, T1r));
cannam@127 288 T1u = VADD(T1q, T1r);
cannam@127 289 T1v = VFNMS(LDK(KP250000000), T1u, T1t);
cannam@127 290 }
cannam@127 291 {
cannam@127 292 V Tq, Tt, Tn, Ts;
cannam@127 293 Tv = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
cannam@127 294 {
cannam@127 295 V To, Tp, Tl, Tm;
cannam@127 296 To = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
cannam@127 297 Tp = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@127 298 Tq = VSUB(To, Tp);
cannam@127 299 Tt = VADD(To, Tp);
cannam@127 300 Tl = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@127 301 Tm = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)]));
cannam@127 302 Tn = VSUB(Tl, Tm);
cannam@127 303 Ts = VADD(Tl, Tm);
cannam@127 304 }
cannam@127 305 Tr = VBYI(VFMA(LDK(KP951056516), Tn, VMUL(LDK(KP587785252), Tq)));
cannam@127 306 TB = VBYI(VFNMS(LDK(KP951056516), Tq, VMUL(LDK(KP587785252), Tn)));
cannam@127 307 Tu = VMUL(LDK(KP559016994), VSUB(Ts, Tt));
cannam@127 308 Tw = VADD(Ts, Tt);
cannam@127 309 Tx = VFNMS(LDK(KP250000000), Tw, Tv);
cannam@127 310 }
cannam@127 311 {
cannam@127 312 V TK, TN, TH, TM;
cannam@127 313 TP = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
cannam@127 314 {
cannam@127 315 V TI, TJ, TF, TG;
cannam@127 316 TI = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
cannam@127 317 TJ = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@127 318 TK = VSUB(TI, TJ);
cannam@127 319 TN = VADD(TI, TJ);
cannam@127 320 TF = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@127 321 TG = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)]));
cannam@127 322 TH = VSUB(TF, TG);
cannam@127 323 TM = VADD(TF, TG);
cannam@127 324 }
cannam@127 325 TL = VBYI(VFMA(LDK(KP951056516), TH, VMUL(LDK(KP587785252), TK)));
cannam@127 326 TV = VBYI(VFNMS(LDK(KP951056516), TK, VMUL(LDK(KP587785252), TH)));
cannam@127 327 TO = VMUL(LDK(KP559016994), VSUB(TM, TN));
cannam@127 328 TQ = VADD(TM, TN);
cannam@127 329 TR = VFNMS(LDK(KP250000000), TQ, TP);
cannam@127 330 }
cannam@127 331 {
cannam@127 332 V T14, T17, T11, T16;
cannam@127 333 T19 = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
cannam@127 334 {
cannam@127 335 V T12, T13, TZ, T10;
cannam@127 336 T12 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
cannam@127 337 T13 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@127 338 T14 = VSUB(T12, T13);
cannam@127 339 T17 = VADD(T12, T13);
cannam@127 340 TZ = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@127 341 T10 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)]));
cannam@127 342 T11 = VSUB(TZ, T10);
cannam@127 343 T16 = VADD(TZ, T10);
cannam@127 344 }
cannam@127 345 T15 = VBYI(VFMA(LDK(KP951056516), T11, VMUL(LDK(KP587785252), T14)));
cannam@127 346 T1f = VBYI(VFNMS(LDK(KP951056516), T14, VMUL(LDK(KP587785252), T11)));
cannam@127 347 T18 = VMUL(LDK(KP559016994), VSUB(T16, T17));
cannam@127 348 T1a = VADD(T16, T17);
cannam@127 349 T1b = VFNMS(LDK(KP250000000), T1a, T19);
cannam@127 350 }
cannam@127 351 ST(&(x[0]), VADD(Tb, Tc), ms, &(x[0]));
cannam@127 352 ST(&(x[WS(rs, 4)]), VADD(T1t, T1u), ms, &(x[0]));
cannam@127 353 ST(&(x[WS(rs, 2)]), VADD(TP, TQ), ms, &(x[0]));
cannam@127 354 ST(&(x[WS(rs, 3)]), VADD(T19, T1a), ms, &(x[WS(rs, 1)]));
cannam@127 355 ST(&(x[WS(rs, 1)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
cannam@127 356 {
cannam@127 357 V Tj, Tk, Ti, T1B, T1C, T1A;
cannam@127 358 Ti = VSUB(Td, Ta);
cannam@127 359 Tj = BYTW(&(W[TWVL * 2]), VADD(Th, Ti));
cannam@127 360 Tk = BYTW(&(W[TWVL * 4]), VSUB(Ti, Th));
cannam@127 361 ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)]));
cannam@127 362 ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)]));
cannam@127 363 T1A = VSUB(T1v, T1s);
cannam@127 364 T1B = BYTW(&(W[TWVL * 2]), VADD(T1z, T1A));
cannam@127 365 T1C = BYTW(&(W[TWVL * 4]), VSUB(T1A, T1z));
cannam@127 366 ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)]));
cannam@127 367 ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)]));
cannam@127 368 }
cannam@127 369 {
cannam@127 370 V T1h, T1i, T1g, TD, TE, TC;
cannam@127 371 T1g = VSUB(T1b, T18);
cannam@127 372 T1h = BYTW(&(W[TWVL * 2]), VADD(T1f, T1g));
cannam@127 373 T1i = BYTW(&(W[TWVL * 4]), VSUB(T1g, T1f));
cannam@127 374 ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@127 375 ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@127 376 TC = VSUB(Tx, Tu);
cannam@127 377 TD = BYTW(&(W[TWVL * 2]), VADD(TB, TC));
cannam@127 378 TE = BYTW(&(W[TWVL * 4]), VSUB(TC, TB));
cannam@127 379 ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
cannam@127 380 ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
cannam@127 381 }
cannam@127 382 {
cannam@127 383 V TX, TY, TW, TT, TU, TS;
cannam@127 384 TW = VSUB(TR, TO);
cannam@127 385 TX = BYTW(&(W[TWVL * 2]), VADD(TV, TW));
cannam@127 386 TY = BYTW(&(W[TWVL * 4]), VSUB(TW, TV));
cannam@127 387 ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)]));
cannam@127 388 ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)]));
cannam@127 389 TS = VADD(TO, TR);
cannam@127 390 TT = BYTW(&(W[0]), VADD(TL, TS));
cannam@127 391 TU = BYTW(&(W[TWVL * 6]), VSUB(TS, TL));
cannam@127 392 ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)]));
cannam@127 393 ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)]));
cannam@127 394 }
cannam@127 395 {
cannam@127 396 V Tf, Tg, Te, Tz, TA, Ty;
cannam@127 397 Te = VADD(Ta, Td);
cannam@127 398 Tf = BYTW(&(W[0]), VADD(T7, Te));
cannam@127 399 Tg = BYTW(&(W[TWVL * 6]), VSUB(Te, T7));
cannam@127 400 ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)]));
cannam@127 401 ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)]));
cannam@127 402 Ty = VADD(Tu, Tx);
cannam@127 403 Tz = BYTW(&(W[0]), VADD(Tr, Ty));
cannam@127 404 TA = BYTW(&(W[TWVL * 6]), VSUB(Ty, Tr));
cannam@127 405 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@127 406 ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
cannam@127 407 }
cannam@127 408 {
cannam@127 409 V T1d, T1e, T1c, T1x, T1y, T1w;
cannam@127 410 T1c = VADD(T18, T1b);
cannam@127 411 T1d = BYTW(&(W[0]), VADD(T15, T1c));
cannam@127 412 T1e = BYTW(&(W[TWVL * 6]), VSUB(T1c, T15));
cannam@127 413 ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
cannam@127 414 ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
cannam@127 415 T1w = VADD(T1s, T1v);
cannam@127 416 T1x = BYTW(&(W[0]), VADD(T1p, T1w));
cannam@127 417 T1y = BYTW(&(W[TWVL * 6]), VSUB(T1w, T1p));
cannam@127 418 ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)]));
cannam@127 419 ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)]));
cannam@127 420 }
cannam@127 421 }
cannam@127 422 }
cannam@127 423 VLEAVE();
cannam@127 424 }
cannam@127 425
cannam@127 426 static const tw_instr twinstr[] = {
cannam@127 427 VTW(0, 1),
cannam@127 428 VTW(0, 2),
cannam@127 429 VTW(0, 3),
cannam@127 430 VTW(0, 4),
cannam@127 431 {TW_NEXT, VL, 0}
cannam@127 432 };
cannam@127 433
cannam@127 434 static const ct_desc desc = { 5, XSIMD_STRING("q1bv_5"), twinstr, &GENUS, {85, 55, 15, 0}, 0, 0, 0 };
cannam@127 435
cannam@127 436 void XSIMD(codelet_q1bv_5) (planner *p) {
cannam@127 437 X(kdft_difsq_register) (p, q1bv_5, &desc);
cannam@127 438 }
cannam@127 439 #endif /* HAVE_FMA */