annotate src/fftw-3.3.5/dft/simd/common/n2bv_8.c @ 129:90a976269628

Updated MSVC
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 15:58:42 +0100
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:40:34 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-dft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n2bv_8 -with-ostride 2 -include n2b.h -store-multiple 2 */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 26 FP additions, 10 FP multiplications,
cannam@127 32 * (or, 16 additions, 0 multiplications, 10 fused multiply/add),
cannam@127 33 * 38 stack variables, 1 constants, and 20 memory accesses
cannam@127 34 */
cannam@127 35 #include "n2b.h"
cannam@127 36
cannam@127 37 static void n2bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@127 38 {
cannam@127 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 40 {
cannam@127 41 INT i;
cannam@127 42 const R *xi;
cannam@127 43 R *xo;
cannam@127 44 xi = ii;
cannam@127 45 xo = io;
cannam@127 46 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
cannam@127 47 V T1, T2, Tc, Td, T4, T5, T7, T8;
cannam@127 48 T1 = LD(&(xi[0]), ivs, &(xi[0]));
cannam@127 49 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@127 50 Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@127 51 Td = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@127 52 T4 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@127 53 T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@127 54 T7 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@127 55 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@127 56 {
cannam@127 57 V T3, Tj, Te, Tk, T6, Tm, T9, Tn, Tp, Tl;
cannam@127 58 T3 = VSUB(T1, T2);
cannam@127 59 Tj = VADD(T1, T2);
cannam@127 60 Te = VSUB(Tc, Td);
cannam@127 61 Tk = VADD(Tc, Td);
cannam@127 62 T6 = VSUB(T4, T5);
cannam@127 63 Tm = VADD(T4, T5);
cannam@127 64 T9 = VSUB(T7, T8);
cannam@127 65 Tn = VADD(T7, T8);
cannam@127 66 Tp = VADD(Tj, Tk);
cannam@127 67 Tl = VSUB(Tj, Tk);
cannam@127 68 {
cannam@127 69 V Tq, To, Ta, Tf;
cannam@127 70 Tq = VADD(Tm, Tn);
cannam@127 71 To = VSUB(Tm, Tn);
cannam@127 72 Ta = VADD(T6, T9);
cannam@127 73 Tf = VSUB(T6, T9);
cannam@127 74 {
cannam@127 75 V Tr, Ts, Tt, Tu, Tg, Ti, Tb, Th;
cannam@127 76 Tr = VFMAI(To, Tl);
cannam@127 77 STM2(&(xo[4]), Tr, ovs, &(xo[0]));
cannam@127 78 Ts = VFNMSI(To, Tl);
cannam@127 79 STM2(&(xo[12]), Ts, ovs, &(xo[0]));
cannam@127 80 Tt = VADD(Tp, Tq);
cannam@127 81 STM2(&(xo[0]), Tt, ovs, &(xo[0]));
cannam@127 82 Tu = VSUB(Tp, Tq);
cannam@127 83 STM2(&(xo[8]), Tu, ovs, &(xo[0]));
cannam@127 84 Tg = VFNMS(LDK(KP707106781), Tf, Te);
cannam@127 85 Ti = VFMA(LDK(KP707106781), Tf, Te);
cannam@127 86 Tb = VFNMS(LDK(KP707106781), Ta, T3);
cannam@127 87 Th = VFMA(LDK(KP707106781), Ta, T3);
cannam@127 88 {
cannam@127 89 V Tv, Tw, Tx, Ty;
cannam@127 90 Tv = VFNMSI(Ti, Th);
cannam@127 91 STM2(&(xo[14]), Tv, ovs, &(xo[2]));
cannam@127 92 STN2(&(xo[12]), Ts, Tv, ovs);
cannam@127 93 Tw = VFMAI(Ti, Th);
cannam@127 94 STM2(&(xo[2]), Tw, ovs, &(xo[2]));
cannam@127 95 STN2(&(xo[0]), Tt, Tw, ovs);
cannam@127 96 Tx = VFMAI(Tg, Tb);
cannam@127 97 STM2(&(xo[10]), Tx, ovs, &(xo[2]));
cannam@127 98 STN2(&(xo[8]), Tu, Tx, ovs);
cannam@127 99 Ty = VFNMSI(Tg, Tb);
cannam@127 100 STM2(&(xo[6]), Ty, ovs, &(xo[2]));
cannam@127 101 STN2(&(xo[4]), Tr, Ty, ovs);
cannam@127 102 }
cannam@127 103 }
cannam@127 104 }
cannam@127 105 }
cannam@127 106 }
cannam@127 107 }
cannam@127 108 VLEAVE();
cannam@127 109 }
cannam@127 110
cannam@127 111 static const kdft_desc desc = { 8, XSIMD_STRING("n2bv_8"), {16, 0, 10, 0}, &GENUS, 0, 2, 0, 0 };
cannam@127 112
cannam@127 113 void XSIMD(codelet_n2bv_8) (planner *p) {
cannam@127 114 X(kdft_register) (p, n2bv_8, &desc);
cannam@127 115 }
cannam@127 116
cannam@127 117 #else /* HAVE_FMA */
cannam@127 118
cannam@127 119 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n2bv_8 -with-ostride 2 -include n2b.h -store-multiple 2 */
cannam@127 120
cannam@127 121 /*
cannam@127 122 * This function contains 26 FP additions, 2 FP multiplications,
cannam@127 123 * (or, 26 additions, 2 multiplications, 0 fused multiply/add),
cannam@127 124 * 24 stack variables, 1 constants, and 20 memory accesses
cannam@127 125 */
cannam@127 126 #include "n2b.h"
cannam@127 127
cannam@127 128 static void n2bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@127 129 {
cannam@127 130 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 131 {
cannam@127 132 INT i;
cannam@127 133 const R *xi;
cannam@127 134 R *xo;
cannam@127 135 xi = ii;
cannam@127 136 xo = io;
cannam@127 137 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
cannam@127 138 V Ta, Tk, Te, Tj, T7, Tn, Tf, Tm, Tr, Tu;
cannam@127 139 {
cannam@127 140 V T8, T9, Tc, Td;
cannam@127 141 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@127 142 T9 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@127 143 Ta = VSUB(T8, T9);
cannam@127 144 Tk = VADD(T8, T9);
cannam@127 145 Tc = LD(&(xi[0]), ivs, &(xi[0]));
cannam@127 146 Td = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@127 147 Te = VSUB(Tc, Td);
cannam@127 148 Tj = VADD(Tc, Td);
cannam@127 149 {
cannam@127 150 V T1, T2, T3, T4, T5, T6;
cannam@127 151 T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@127 152 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@127 153 T3 = VSUB(T1, T2);
cannam@127 154 T4 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@127 155 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@127 156 T6 = VSUB(T4, T5);
cannam@127 157 T7 = VMUL(LDK(KP707106781), VSUB(T3, T6));
cannam@127 158 Tn = VADD(T4, T5);
cannam@127 159 Tf = VMUL(LDK(KP707106781), VADD(T3, T6));
cannam@127 160 Tm = VADD(T1, T2);
cannam@127 161 }
cannam@127 162 }
cannam@127 163 {
cannam@127 164 V Ts, Tb, Tg, Tp, Tq, Tt;
cannam@127 165 Tb = VBYI(VSUB(T7, Ta));
cannam@127 166 Tg = VSUB(Te, Tf);
cannam@127 167 Tr = VADD(Tb, Tg);
cannam@127 168 STM2(&(xo[6]), Tr, ovs, &(xo[2]));
cannam@127 169 Ts = VSUB(Tg, Tb);
cannam@127 170 STM2(&(xo[10]), Ts, ovs, &(xo[2]));
cannam@127 171 Tp = VADD(Tj, Tk);
cannam@127 172 Tq = VADD(Tm, Tn);
cannam@127 173 Tt = VSUB(Tp, Tq);
cannam@127 174 STM2(&(xo[8]), Tt, ovs, &(xo[0]));
cannam@127 175 STN2(&(xo[8]), Tt, Ts, ovs);
cannam@127 176 Tu = VADD(Tp, Tq);
cannam@127 177 STM2(&(xo[0]), Tu, ovs, &(xo[0]));
cannam@127 178 }
cannam@127 179 {
cannam@127 180 V Tw, Th, Ti, Tv;
cannam@127 181 Th = VBYI(VADD(Ta, T7));
cannam@127 182 Ti = VADD(Te, Tf);
cannam@127 183 Tv = VADD(Th, Ti);
cannam@127 184 STM2(&(xo[2]), Tv, ovs, &(xo[2]));
cannam@127 185 STN2(&(xo[0]), Tu, Tv, ovs);
cannam@127 186 Tw = VSUB(Ti, Th);
cannam@127 187 STM2(&(xo[14]), Tw, ovs, &(xo[2]));
cannam@127 188 {
cannam@127 189 V Tl, To, Tx, Ty;
cannam@127 190 Tl = VSUB(Tj, Tk);
cannam@127 191 To = VBYI(VSUB(Tm, Tn));
cannam@127 192 Tx = VSUB(Tl, To);
cannam@127 193 STM2(&(xo[12]), Tx, ovs, &(xo[0]));
cannam@127 194 STN2(&(xo[12]), Tx, Tw, ovs);
cannam@127 195 Ty = VADD(Tl, To);
cannam@127 196 STM2(&(xo[4]), Ty, ovs, &(xo[0]));
cannam@127 197 STN2(&(xo[4]), Ty, Tr, ovs);
cannam@127 198 }
cannam@127 199 }
cannam@127 200 }
cannam@127 201 }
cannam@127 202 VLEAVE();
cannam@127 203 }
cannam@127 204
cannam@127 205 static const kdft_desc desc = { 8, XSIMD_STRING("n2bv_8"), {26, 2, 0, 0}, &GENUS, 0, 2, 0, 0 };
cannam@127 206
cannam@127 207 void XSIMD(codelet_n2bv_8) (planner *p) {
cannam@127 208 X(kdft_register) (p, n2bv_8, &desc);
cannam@127 209 }
cannam@127 210
cannam@127 211 #endif /* HAVE_FMA */