annotate src/fftw-3.3.3/rdft/generic.c @ 19:891f60ab2af1

Ranlib
author Chris Cannam
date Mon, 25 Mar 2013 16:27:30 +0000
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 #include "rdft.h"
Chris@10 22
Chris@10 23 typedef struct {
Chris@10 24 solver super;
Chris@10 25 rdft_kind kind;
Chris@10 26 } S;
Chris@10 27
Chris@10 28 typedef struct {
Chris@10 29 plan_rdft super;
Chris@10 30 twid *td;
Chris@10 31 INT n, is, os;
Chris@10 32 rdft_kind kind;
Chris@10 33 } P;
Chris@10 34
Chris@10 35 /***************************************************************************/
Chris@10 36
Chris@10 37 static void cdot_r2hc(INT n, const E *x, const R *w, R *or0, R *oi1)
Chris@10 38 {
Chris@10 39 INT i;
Chris@10 40
Chris@10 41 E rr = x[0], ri = 0;
Chris@10 42 x += 1;
Chris@10 43 for (i = 1; i + i < n; ++i) {
Chris@10 44 rr += x[0] * w[0];
Chris@10 45 ri += x[1] * w[1];
Chris@10 46 x += 2; w += 2;
Chris@10 47 }
Chris@10 48 *or0 = rr;
Chris@10 49 *oi1 = ri;
Chris@10 50 }
Chris@10 51
Chris@10 52 static void hartley_r2hc(INT n, const R *xr, INT xs, E *o, R *pr)
Chris@10 53 {
Chris@10 54 INT i;
Chris@10 55 E sr;
Chris@10 56 o[0] = sr = xr[0]; o += 1;
Chris@10 57 for (i = 1; i + i < n; ++i) {
Chris@10 58 R a, b;
Chris@10 59 a = xr[i * xs];
Chris@10 60 b = xr[(n - i) * xs];
Chris@10 61 sr += (o[0] = a + b);
Chris@10 62 #if FFT_SIGN == -1
Chris@10 63 o[1] = b - a;
Chris@10 64 #else
Chris@10 65 o[1] = a - b;
Chris@10 66 #endif
Chris@10 67 o += 2;
Chris@10 68 }
Chris@10 69 *pr = sr;
Chris@10 70 }
Chris@10 71
Chris@10 72 static void apply_r2hc(const plan *ego_, R *I, R *O)
Chris@10 73 {
Chris@10 74 const P *ego = (const P *) ego_;
Chris@10 75 INT i;
Chris@10 76 INT n = ego->n, is = ego->is, os = ego->os;
Chris@10 77 const R *W = ego->td->W;
Chris@10 78 E *buf;
Chris@10 79 size_t bufsz = n * sizeof(E);
Chris@10 80
Chris@10 81 BUF_ALLOC(E *, buf, bufsz);
Chris@10 82 hartley_r2hc(n, I, is, buf, O);
Chris@10 83
Chris@10 84 for (i = 1; i + i < n; ++i) {
Chris@10 85 cdot_r2hc(n, buf, W, O + i * os, O + (n - i) * os);
Chris@10 86 W += n - 1;
Chris@10 87 }
Chris@10 88
Chris@10 89 BUF_FREE(buf, bufsz);
Chris@10 90 }
Chris@10 91
Chris@10 92
Chris@10 93 static void cdot_hc2r(INT n, const E *x, const R *w, R *or0, R *or1)
Chris@10 94 {
Chris@10 95 INT i;
Chris@10 96
Chris@10 97 E rr = x[0], ii = 0;
Chris@10 98 x += 1;
Chris@10 99 for (i = 1; i + i < n; ++i) {
Chris@10 100 rr += x[0] * w[0];
Chris@10 101 ii += x[1] * w[1];
Chris@10 102 x += 2; w += 2;
Chris@10 103 }
Chris@10 104 #if FFT_SIGN == -1
Chris@10 105 *or0 = rr - ii;
Chris@10 106 *or1 = rr + ii;
Chris@10 107 #else
Chris@10 108 *or0 = rr + ii;
Chris@10 109 *or1 = rr - ii;
Chris@10 110 #endif
Chris@10 111 }
Chris@10 112
Chris@10 113 static void hartley_hc2r(INT n, const R *x, INT xs, E *o, R *pr)
Chris@10 114 {
Chris@10 115 INT i;
Chris@10 116 E sr;
Chris@10 117
Chris@10 118 o[0] = sr = x[0]; o += 1;
Chris@10 119 for (i = 1; i + i < n; ++i) {
Chris@10 120 sr += (o[0] = x[i * xs] + x[i * xs]);
Chris@10 121 o[1] = x[(n - i) * xs] + x[(n - i) * xs];
Chris@10 122 o += 2;
Chris@10 123 }
Chris@10 124 *pr = sr;
Chris@10 125 }
Chris@10 126
Chris@10 127 static void apply_hc2r(const plan *ego_, R *I, R *O)
Chris@10 128 {
Chris@10 129 const P *ego = (const P *) ego_;
Chris@10 130 INT i;
Chris@10 131 INT n = ego->n, is = ego->is, os = ego->os;
Chris@10 132 const R *W = ego->td->W;
Chris@10 133 E *buf;
Chris@10 134 size_t bufsz = n * sizeof(E);
Chris@10 135
Chris@10 136 BUF_ALLOC(E *, buf, bufsz);
Chris@10 137 hartley_hc2r(n, I, is, buf, O);
Chris@10 138
Chris@10 139 for (i = 1; i + i < n; ++i) {
Chris@10 140 cdot_hc2r(n, buf, W, O + i * os, O + (n - i) * os);
Chris@10 141 W += n - 1;
Chris@10 142 }
Chris@10 143
Chris@10 144 BUF_FREE(buf, bufsz);
Chris@10 145 }
Chris@10 146
Chris@10 147
Chris@10 148 /***************************************************************************/
Chris@10 149
Chris@10 150 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 151 {
Chris@10 152 P *ego = (P *) ego_;
Chris@10 153 static const tw_instr half_tw[] = {
Chris@10 154 { TW_HALF, 1, 0 },
Chris@10 155 { TW_NEXT, 1, 0 }
Chris@10 156 };
Chris@10 157
Chris@10 158 X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
Chris@10 159 (ego->n - 1) / 2);
Chris@10 160 }
Chris@10 161
Chris@10 162 static void print(const plan *ego_, printer *p)
Chris@10 163 {
Chris@10 164 const P *ego = (const P *) ego_;
Chris@10 165
Chris@10 166 p->print(p, "(rdft-generic-%s-%D)",
Chris@10 167 ego->kind == R2HC ? "r2hc" : "hc2r",
Chris@10 168 ego->n);
Chris@10 169 }
Chris@10 170
Chris@10 171 static int applicable(const S *ego, const problem *p_,
Chris@10 172 const planner *plnr)
Chris@10 173 {
Chris@10 174 const problem_rdft *p = (const problem_rdft *) p_;
Chris@10 175 return (1
Chris@10 176 && p->sz->rnk == 1
Chris@10 177 && p->vecsz->rnk == 0
Chris@10 178 && (p->sz->dims[0].n % 2) == 1
Chris@10 179 && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD)
Chris@10 180 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW)
Chris@10 181 && X(is_prime)(p->sz->dims[0].n)
Chris@10 182 && p->kind[0] == ego->kind
Chris@10 183 );
Chris@10 184 }
Chris@10 185
Chris@10 186 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 187 {
Chris@10 188 const S *ego = (const S *)ego_;
Chris@10 189 const problem_rdft *p;
Chris@10 190 P *pln;
Chris@10 191 INT n;
Chris@10 192
Chris@10 193 static const plan_adt padt = {
Chris@10 194 X(rdft_solve), awake, print, X(plan_null_destroy)
Chris@10 195 };
Chris@10 196
Chris@10 197 if (!applicable(ego, p_, plnr))
Chris@10 198 return (plan *)0;
Chris@10 199
Chris@10 200 p = (const problem_rdft *) p_;
Chris@10 201 pln = MKPLAN_RDFT(P, &padt,
Chris@10 202 R2HC_KINDP(p->kind[0]) ? apply_r2hc : apply_hc2r);
Chris@10 203
Chris@10 204 pln->n = n = p->sz->dims[0].n;
Chris@10 205 pln->is = p->sz->dims[0].is;
Chris@10 206 pln->os = p->sz->dims[0].os;
Chris@10 207 pln->td = 0;
Chris@10 208 pln->kind = ego->kind;
Chris@10 209
Chris@10 210 pln->super.super.ops.add = (n-1) * 2.5;
Chris@10 211 pln->super.super.ops.mul = 0;
Chris@10 212 pln->super.super.ops.fma = 0.5 * (n-1) * (n-1) ;
Chris@10 213 #if 0 /* these are nice pipelined sequential loads and should cost nothing */
Chris@10 214 pln->super.super.ops.other = (n-1)*(2 + 1 + (n-1)); /* approximate */
Chris@10 215 #endif
Chris@10 216
Chris@10 217 return &(pln->super.super);
Chris@10 218 }
Chris@10 219
Chris@10 220 static solver *mksolver(rdft_kind kind)
Chris@10 221 {
Chris@10 222 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@10 223 S *slv = MKSOLVER(S, &sadt);
Chris@10 224 slv->kind = kind;
Chris@10 225 return &(slv->super);
Chris@10 226 }
Chris@10 227
Chris@10 228 void X(rdft_generic_register)(planner *p)
Chris@10 229 {
Chris@10 230 REGISTER_SOLVER(p, mksolver(R2HC));
Chris@10 231 REGISTER_SOLVER(p, mksolver(HC2R));
Chris@10 232 }