annotate src/fftw-3.3.5/dft/simd/common/n2fv_12.c @ 165:7e6e71a29886

Update build for AUDIO_COMPONENT_FIX
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 30 Oct 2019 12:40:34 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:40:09 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-dft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n2fv_12 -with-ostride 2 -include n2f.h -store-multiple 2 */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 48 FP additions, 20 FP multiplications,
cannam@127 32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
cannam@127 33 * 61 stack variables, 2 constants, and 30 memory accesses
cannam@127 34 */
cannam@127 35 #include "n2f.h"
cannam@127 36
cannam@127 37 static void n2fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@127 38 {
cannam@127 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 41 {
cannam@127 42 INT i;
cannam@127 43 const R *xi;
cannam@127 44 R *xo;
cannam@127 45 xi = ri;
cannam@127 46 xo = ro;
cannam@127 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
cannam@127 48 V T1, T6, Tk, Tn, Tc, Td, Tf, Tr, T4, Ts, T9, Tg, Te, Tl;
cannam@127 49 {
cannam@127 50 V T2, T3, T7, T8;
cannam@127 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
cannam@127 52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@127 53 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@127 54 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
cannam@127 55 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
cannam@127 56 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@127 57 Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@127 58 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
cannam@127 59 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
cannam@127 60 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@127 61 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@127 62 Tr = VSUB(T3, T2);
cannam@127 63 T4 = VADD(T2, T3);
cannam@127 64 Ts = VSUB(T8, T7);
cannam@127 65 T9 = VADD(T7, T8);
cannam@127 66 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@127 67 }
cannam@127 68 Te = VSUB(Tc, Td);
cannam@127 69 Tl = VADD(Td, Tc);
cannam@127 70 {
cannam@127 71 V T5, TF, TB, Tt, Ta, TG, Th, To, Tm, TI;
cannam@127 72 T5 = VFNMS(LDK(KP500000000), T4, T1);
cannam@127 73 TF = VADD(T1, T4);
cannam@127 74 TB = VADD(Tr, Ts);
cannam@127 75 Tt = VSUB(Tr, Ts);
cannam@127 76 Ta = VFNMS(LDK(KP500000000), T9, T6);
cannam@127 77 TG = VADD(T6, T9);
cannam@127 78 Th = VSUB(Tf, Tg);
cannam@127 79 To = VADD(Tf, Tg);
cannam@127 80 Tm = VFNMS(LDK(KP500000000), Tl, Tk);
cannam@127 81 TI = VADD(Tk, Tl);
cannam@127 82 {
cannam@127 83 V TH, TL, Tb, Tx, TJ, Tp, Ti, TA;
cannam@127 84 TH = VSUB(TF, TG);
cannam@127 85 TL = VADD(TF, TG);
cannam@127 86 Tb = VSUB(T5, Ta);
cannam@127 87 Tx = VADD(T5, Ta);
cannam@127 88 TJ = VADD(Tn, To);
cannam@127 89 Tp = VFNMS(LDK(KP500000000), To, Tn);
cannam@127 90 Ti = VADD(Te, Th);
cannam@127 91 TA = VSUB(Te, Th);
cannam@127 92 {
cannam@127 93 V Tq, Ty, TK, TM;
cannam@127 94 Tq = VSUB(Tm, Tp);
cannam@127 95 Ty = VADD(Tm, Tp);
cannam@127 96 TK = VSUB(TI, TJ);
cannam@127 97 TM = VADD(TI, TJ);
cannam@127 98 {
cannam@127 99 V TC, TE, Tj, Tv;
cannam@127 100 TC = VMUL(LDK(KP866025403), VSUB(TA, TB));
cannam@127 101 TE = VMUL(LDK(KP866025403), VADD(TB, TA));
cannam@127 102 Tj = VFMA(LDK(KP866025403), Ti, Tb);
cannam@127 103 Tv = VFNMS(LDK(KP866025403), Ti, Tb);
cannam@127 104 {
cannam@127 105 V Tz, TD, Tu, Tw;
cannam@127 106 Tz = VSUB(Tx, Ty);
cannam@127 107 TD = VADD(Tx, Ty);
cannam@127 108 Tu = VFNMS(LDK(KP866025403), Tt, Tq);
cannam@127 109 Tw = VFMA(LDK(KP866025403), Tt, Tq);
cannam@127 110 {
cannam@127 111 V TN, TO, TP, TQ;
cannam@127 112 TN = VADD(TL, TM);
cannam@127 113 STM2(&(xo[0]), TN, ovs, &(xo[0]));
cannam@127 114 TO = VSUB(TL, TM);
cannam@127 115 STM2(&(xo[12]), TO, ovs, &(xo[0]));
cannam@127 116 TP = VFMAI(TK, TH);
cannam@127 117 STM2(&(xo[6]), TP, ovs, &(xo[2]));
cannam@127 118 TQ = VFNMSI(TK, TH);
cannam@127 119 STM2(&(xo[18]), TQ, ovs, &(xo[2]));
cannam@127 120 {
cannam@127 121 V TR, TS, TT, TU;
cannam@127 122 TR = VFMAI(TE, TD);
cannam@127 123 STM2(&(xo[8]), TR, ovs, &(xo[0]));
cannam@127 124 TS = VFNMSI(TE, TD);
cannam@127 125 STM2(&(xo[16]), TS, ovs, &(xo[0]));
cannam@127 126 STN2(&(xo[16]), TS, TQ, ovs);
cannam@127 127 TT = VFNMSI(TC, Tz);
cannam@127 128 STM2(&(xo[20]), TT, ovs, &(xo[0]));
cannam@127 129 TU = VFMAI(TC, Tz);
cannam@127 130 STM2(&(xo[4]), TU, ovs, &(xo[0]));
cannam@127 131 STN2(&(xo[4]), TU, TP, ovs);
cannam@127 132 {
cannam@127 133 V TV, TW, TX, TY;
cannam@127 134 TV = VFNMSI(Tw, Tv);
cannam@127 135 STM2(&(xo[10]), TV, ovs, &(xo[2]));
cannam@127 136 STN2(&(xo[8]), TR, TV, ovs);
cannam@127 137 TW = VFMAI(Tw, Tv);
cannam@127 138 STM2(&(xo[14]), TW, ovs, &(xo[2]));
cannam@127 139 STN2(&(xo[12]), TO, TW, ovs);
cannam@127 140 TX = VFMAI(Tu, Tj);
cannam@127 141 STM2(&(xo[22]), TX, ovs, &(xo[2]));
cannam@127 142 STN2(&(xo[20]), TT, TX, ovs);
cannam@127 143 TY = VFNMSI(Tu, Tj);
cannam@127 144 STM2(&(xo[2]), TY, ovs, &(xo[2]));
cannam@127 145 STN2(&(xo[0]), TN, TY, ovs);
cannam@127 146 }
cannam@127 147 }
cannam@127 148 }
cannam@127 149 }
cannam@127 150 }
cannam@127 151 }
cannam@127 152 }
cannam@127 153 }
cannam@127 154 }
cannam@127 155 }
cannam@127 156 VLEAVE();
cannam@127 157 }
cannam@127 158
cannam@127 159 static const kdft_desc desc = { 12, XSIMD_STRING("n2fv_12"), {30, 2, 18, 0}, &GENUS, 0, 2, 0, 0 };
cannam@127 160
cannam@127 161 void XSIMD(codelet_n2fv_12) (planner *p) {
cannam@127 162 X(kdft_register) (p, n2fv_12, &desc);
cannam@127 163 }
cannam@127 164
cannam@127 165 #else /* HAVE_FMA */
cannam@127 166
cannam@127 167 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n2fv_12 -with-ostride 2 -include n2f.h -store-multiple 2 */
cannam@127 168
cannam@127 169 /*
cannam@127 170 * This function contains 48 FP additions, 8 FP multiplications,
cannam@127 171 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
cannam@127 172 * 33 stack variables, 2 constants, and 30 memory accesses
cannam@127 173 */
cannam@127 174 #include "n2f.h"
cannam@127 175
cannam@127 176 static void n2fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@127 177 {
cannam@127 178 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 179 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 180 {
cannam@127 181 INT i;
cannam@127 182 const R *xi;
cannam@127 183 R *xo;
cannam@127 184 xi = ri;
cannam@127 185 xo = ro;
cannam@127 186 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
cannam@127 187 V T5, Ta, TJ, Ty, Tq, Tp, Tg, Tl, TI, TA, Tz, Tu;
cannam@127 188 {
cannam@127 189 V T1, T6, T4, Tw, T9, Tx;
cannam@127 190 T1 = LD(&(xi[0]), ivs, &(xi[0]));
cannam@127 191 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@127 192 {
cannam@127 193 V T2, T3, T7, T8;
cannam@127 194 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@127 195 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
cannam@127 196 T4 = VADD(T2, T3);
cannam@127 197 Tw = VSUB(T3, T2);
cannam@127 198 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
cannam@127 199 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@127 200 T9 = VADD(T7, T8);
cannam@127 201 Tx = VSUB(T8, T7);
cannam@127 202 }
cannam@127 203 T5 = VADD(T1, T4);
cannam@127 204 Ta = VADD(T6, T9);
cannam@127 205 TJ = VADD(Tw, Tx);
cannam@127 206 Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx));
cannam@127 207 Tq = VFNMS(LDK(KP500000000), T9, T6);
cannam@127 208 Tp = VFNMS(LDK(KP500000000), T4, T1);
cannam@127 209 }
cannam@127 210 {
cannam@127 211 V Tc, Th, Tf, Ts, Tk, Tt;
cannam@127 212 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@127 213 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
cannam@127 214 {
cannam@127 215 V Td, Te, Ti, Tj;
cannam@127 216 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@127 217 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
cannam@127 218 Tf = VADD(Td, Te);
cannam@127 219 Ts = VSUB(Te, Td);
cannam@127 220 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@127 221 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@127 222 Tk = VADD(Ti, Tj);
cannam@127 223 Tt = VSUB(Tj, Ti);
cannam@127 224 }
cannam@127 225 Tg = VADD(Tc, Tf);
cannam@127 226 Tl = VADD(Th, Tk);
cannam@127 227 TI = VADD(Ts, Tt);
cannam@127 228 TA = VFNMS(LDK(KP500000000), Tk, Th);
cannam@127 229 Tz = VFNMS(LDK(KP500000000), Tf, Tc);
cannam@127 230 Tu = VMUL(LDK(KP866025403), VSUB(Ts, Tt));
cannam@127 231 }
cannam@127 232 {
cannam@127 233 V TN, TO, TP, TQ, TR, TS;
cannam@127 234 {
cannam@127 235 V Tb, Tm, Tn, To;
cannam@127 236 Tb = VSUB(T5, Ta);
cannam@127 237 Tm = VBYI(VSUB(Tg, Tl));
cannam@127 238 TN = VSUB(Tb, Tm);
cannam@127 239 STM2(&(xo[18]), TN, ovs, &(xo[2]));
cannam@127 240 TO = VADD(Tb, Tm);
cannam@127 241 STM2(&(xo[6]), TO, ovs, &(xo[2]));
cannam@127 242 Tn = VADD(T5, Ta);
cannam@127 243 To = VADD(Tg, Tl);
cannam@127 244 TP = VSUB(Tn, To);
cannam@127 245 STM2(&(xo[12]), TP, ovs, &(xo[0]));
cannam@127 246 TQ = VADD(Tn, To);
cannam@127 247 STM2(&(xo[0]), TQ, ovs, &(xo[0]));
cannam@127 248 }
cannam@127 249 {
cannam@127 250 V Tv, TE, TC, TD, Tr, TB, TT, TU;
cannam@127 251 Tr = VSUB(Tp, Tq);
cannam@127 252 Tv = VSUB(Tr, Tu);
cannam@127 253 TE = VADD(Tr, Tu);
cannam@127 254 TB = VSUB(Tz, TA);
cannam@127 255 TC = VBYI(VADD(Ty, TB));
cannam@127 256 TD = VBYI(VSUB(Ty, TB));
cannam@127 257 TR = VSUB(Tv, TC);
cannam@127 258 STM2(&(xo[10]), TR, ovs, &(xo[2]));
cannam@127 259 TS = VSUB(TE, TD);
cannam@127 260 STM2(&(xo[22]), TS, ovs, &(xo[2]));
cannam@127 261 TT = VADD(TC, Tv);
cannam@127 262 STM2(&(xo[14]), TT, ovs, &(xo[2]));
cannam@127 263 STN2(&(xo[12]), TP, TT, ovs);
cannam@127 264 TU = VADD(TD, TE);
cannam@127 265 STM2(&(xo[2]), TU, ovs, &(xo[2]));
cannam@127 266 STN2(&(xo[0]), TQ, TU, ovs);
cannam@127 267 }
cannam@127 268 {
cannam@127 269 V TK, TM, TH, TL, TF, TG;
cannam@127 270 TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ)));
cannam@127 271 TM = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI)));
cannam@127 272 TF = VADD(Tp, Tq);
cannam@127 273 TG = VADD(Tz, TA);
cannam@127 274 TH = VSUB(TF, TG);
cannam@127 275 TL = VADD(TF, TG);
cannam@127 276 {
cannam@127 277 V TV, TW, TX, TY;
cannam@127 278 TV = VSUB(TH, TK);
cannam@127 279 STM2(&(xo[20]), TV, ovs, &(xo[0]));
cannam@127 280 STN2(&(xo[20]), TV, TS, ovs);
cannam@127 281 TW = VADD(TL, TM);
cannam@127 282 STM2(&(xo[8]), TW, ovs, &(xo[0]));
cannam@127 283 STN2(&(xo[8]), TW, TR, ovs);
cannam@127 284 TX = VADD(TH, TK);
cannam@127 285 STM2(&(xo[4]), TX, ovs, &(xo[0]));
cannam@127 286 STN2(&(xo[4]), TX, TO, ovs);
cannam@127 287 TY = VSUB(TL, TM);
cannam@127 288 STM2(&(xo[16]), TY, ovs, &(xo[0]));
cannam@127 289 STN2(&(xo[16]), TY, TN, ovs);
cannam@127 290 }
cannam@127 291 }
cannam@127 292 }
cannam@127 293 }
cannam@127 294 }
cannam@127 295 VLEAVE();
cannam@127 296 }
cannam@127 297
cannam@127 298 static const kdft_desc desc = { 12, XSIMD_STRING("n2fv_12"), {44, 4, 4, 0}, &GENUS, 0, 2, 0, 0 };
cannam@127 299
cannam@127 300 void XSIMD(codelet_n2fv_12) (planner *p) {
cannam@127 301 X(kdft_register) (p, n2fv_12, &desc);
cannam@127 302 }
cannam@127 303
cannam@127 304 #endif /* HAVE_FMA */