annotate src/fftw-3.3.5/dft/simd/common/n2fv_10.c @ 165:7e6e71a29886

Update build for AUDIO_COMPONENT_FIX
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 30 Oct 2019 12:40:34 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:40:08 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-dft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name n2fv_10 -with-ostride 2 -include n2f.h -store-multiple 2 */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 42 FP additions, 22 FP multiplications,
cannam@127 32 * (or, 24 additions, 4 multiplications, 18 fused multiply/add),
cannam@127 33 * 53 stack variables, 4 constants, and 25 memory accesses
cannam@127 34 */
cannam@127 35 #include "n2f.h"
cannam@127 36
cannam@127 37 static void n2fv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@127 38 {
cannam@127 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@127 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@127 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@127 43 {
cannam@127 44 INT i;
cannam@127 45 const R *xi;
cannam@127 46 R *xo;
cannam@127 47 xi = ri;
cannam@127 48 xo = ro;
cannam@127 49 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
cannam@127 50 V Tb, Tr, T3, Ts, T6, Tw, Tg, Tt, T9, Tc, T1, T2;
cannam@127 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
cannam@127 52 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@127 53 {
cannam@127 54 V T4, T5, Te, Tf, T7, T8;
cannam@127 55 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@127 56 T5 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@127 57 Te = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@127 58 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@127 59 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
cannam@127 60 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@127 61 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@127 62 Tr = VADD(T1, T2);
cannam@127 63 T3 = VSUB(T1, T2);
cannam@127 64 Ts = VADD(T4, T5);
cannam@127 65 T6 = VSUB(T4, T5);
cannam@127 66 Tw = VADD(Te, Tf);
cannam@127 67 Tg = VSUB(Te, Tf);
cannam@127 68 Tt = VADD(T7, T8);
cannam@127 69 T9 = VSUB(T7, T8);
cannam@127 70 Tc = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
cannam@127 71 }
cannam@127 72 {
cannam@127 73 V TD, Tu, Tm, Ta, Td, Tv;
cannam@127 74 TD = VSUB(Ts, Tt);
cannam@127 75 Tu = VADD(Ts, Tt);
cannam@127 76 Tm = VSUB(T6, T9);
cannam@127 77 Ta = VADD(T6, T9);
cannam@127 78 Td = VSUB(Tb, Tc);
cannam@127 79 Tv = VADD(Tb, Tc);
cannam@127 80 {
cannam@127 81 V TC, Tx, Tn, Th;
cannam@127 82 TC = VSUB(Tv, Tw);
cannam@127 83 Tx = VADD(Tv, Tw);
cannam@127 84 Tn = VSUB(Td, Tg);
cannam@127 85 Th = VADD(Td, Tg);
cannam@127 86 {
cannam@127 87 V Ty, TA, TE, TG, Ti, Tk, To, Tq;
cannam@127 88 Ty = VADD(Tu, Tx);
cannam@127 89 TA = VSUB(Tu, Tx);
cannam@127 90 TE = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TD, TC));
cannam@127 91 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TC, TD));
cannam@127 92 Ti = VADD(Ta, Th);
cannam@127 93 Tk = VSUB(Ta, Th);
cannam@127 94 To = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, Tm));
cannam@127 95 Tq = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tm, Tn));
cannam@127 96 {
cannam@127 97 V Tz, TH, Tj, TI;
cannam@127 98 Tz = VFNMS(LDK(KP250000000), Ty, Tr);
cannam@127 99 TH = VADD(Tr, Ty);
cannam@127 100 STM2(&(xo[0]), TH, ovs, &(xo[0]));
cannam@127 101 Tj = VFNMS(LDK(KP250000000), Ti, T3);
cannam@127 102 TI = VADD(T3, Ti);
cannam@127 103 STM2(&(xo[10]), TI, ovs, &(xo[2]));
cannam@127 104 {
cannam@127 105 V TB, TF, Tl, Tp;
cannam@127 106 TB = VFNMS(LDK(KP559016994), TA, Tz);
cannam@127 107 TF = VFMA(LDK(KP559016994), TA, Tz);
cannam@127 108 Tl = VFMA(LDK(KP559016994), Tk, Tj);
cannam@127 109 Tp = VFNMS(LDK(KP559016994), Tk, Tj);
cannam@127 110 {
cannam@127 111 V TJ, TK, TL, TM;
cannam@127 112 TJ = VFMAI(TG, TF);
cannam@127 113 STM2(&(xo[8]), TJ, ovs, &(xo[0]));
cannam@127 114 STN2(&(xo[8]), TJ, TI, ovs);
cannam@127 115 TK = VFNMSI(TG, TF);
cannam@127 116 STM2(&(xo[12]), TK, ovs, &(xo[0]));
cannam@127 117 TL = VFNMSI(TE, TB);
cannam@127 118 STM2(&(xo[16]), TL, ovs, &(xo[0]));
cannam@127 119 TM = VFMAI(TE, TB);
cannam@127 120 STM2(&(xo[4]), TM, ovs, &(xo[0]));
cannam@127 121 {
cannam@127 122 V TN, TO, TP, TQ;
cannam@127 123 TN = VFNMSI(Tq, Tp);
cannam@127 124 STM2(&(xo[6]), TN, ovs, &(xo[2]));
cannam@127 125 STN2(&(xo[4]), TM, TN, ovs);
cannam@127 126 TO = VFMAI(Tq, Tp);
cannam@127 127 STM2(&(xo[14]), TO, ovs, &(xo[2]));
cannam@127 128 STN2(&(xo[12]), TK, TO, ovs);
cannam@127 129 TP = VFMAI(To, Tl);
cannam@127 130 STM2(&(xo[18]), TP, ovs, &(xo[2]));
cannam@127 131 STN2(&(xo[16]), TL, TP, ovs);
cannam@127 132 TQ = VFNMSI(To, Tl);
cannam@127 133 STM2(&(xo[2]), TQ, ovs, &(xo[2]));
cannam@127 134 STN2(&(xo[0]), TH, TQ, ovs);
cannam@127 135 }
cannam@127 136 }
cannam@127 137 }
cannam@127 138 }
cannam@127 139 }
cannam@127 140 }
cannam@127 141 }
cannam@127 142 }
cannam@127 143 }
cannam@127 144 VLEAVE();
cannam@127 145 }
cannam@127 146
cannam@127 147 static const kdft_desc desc = { 10, XSIMD_STRING("n2fv_10"), {24, 4, 18, 0}, &GENUS, 0, 2, 0, 0 };
cannam@127 148
cannam@127 149 void XSIMD(codelet_n2fv_10) (planner *p) {
cannam@127 150 X(kdft_register) (p, n2fv_10, &desc);
cannam@127 151 }
cannam@127 152
cannam@127 153 #else /* HAVE_FMA */
cannam@127 154
cannam@127 155 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name n2fv_10 -with-ostride 2 -include n2f.h -store-multiple 2 */
cannam@127 156
cannam@127 157 /*
cannam@127 158 * This function contains 42 FP additions, 12 FP multiplications,
cannam@127 159 * (or, 36 additions, 6 multiplications, 6 fused multiply/add),
cannam@127 160 * 36 stack variables, 4 constants, and 25 memory accesses
cannam@127 161 */
cannam@127 162 #include "n2f.h"
cannam@127 163
cannam@127 164 static void n2fv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@127 165 {
cannam@127 166 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 167 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@127 168 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@127 169 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@127 170 {
cannam@127 171 INT i;
cannam@127 172 const R *xi;
cannam@127 173 R *xo;
cannam@127 174 xi = ri;
cannam@127 175 xo = ro;
cannam@127 176 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
cannam@127 177 V Ti, Ty, Tm, Tn, Tw, Tt, Tz, TA, TB, T7, Te, Tj, Tg, Th;
cannam@127 178 Tg = LD(&(xi[0]), ivs, &(xi[0]));
cannam@127 179 Th = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@127 180 Ti = VSUB(Tg, Th);
cannam@127 181 Ty = VADD(Tg, Th);
cannam@127 182 {
cannam@127 183 V T3, Tu, Td, Ts, T6, Tv, Ta, Tr;
cannam@127 184 {
cannam@127 185 V T1, T2, Tb, Tc;
cannam@127 186 T1 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@127 187 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@127 188 T3 = VSUB(T1, T2);
cannam@127 189 Tu = VADD(T1, T2);
cannam@127 190 Tb = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@127 191 Tc = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@127 192 Td = VSUB(Tb, Tc);
cannam@127 193 Ts = VADD(Tb, Tc);
cannam@127 194 }
cannam@127 195 {
cannam@127 196 V T4, T5, T8, T9;
cannam@127 197 T4 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
cannam@127 198 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@127 199 T6 = VSUB(T4, T5);
cannam@127 200 Tv = VADD(T4, T5);
cannam@127 201 T8 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@127 202 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
cannam@127 203 Ta = VSUB(T8, T9);
cannam@127 204 Tr = VADD(T8, T9);
cannam@127 205 }
cannam@127 206 Tm = VSUB(T3, T6);
cannam@127 207 Tn = VSUB(Ta, Td);
cannam@127 208 Tw = VSUB(Tu, Tv);
cannam@127 209 Tt = VSUB(Tr, Ts);
cannam@127 210 Tz = VADD(Tu, Tv);
cannam@127 211 TA = VADD(Tr, Ts);
cannam@127 212 TB = VADD(Tz, TA);
cannam@127 213 T7 = VADD(T3, T6);
cannam@127 214 Te = VADD(Ta, Td);
cannam@127 215 Tj = VADD(T7, Te);
cannam@127 216 }
cannam@127 217 {
cannam@127 218 V TH, TI, TK, TL, TM;
cannam@127 219 TH = VADD(Ti, Tj);
cannam@127 220 STM2(&(xo[10]), TH, ovs, &(xo[2]));
cannam@127 221 TI = VADD(Ty, TB);
cannam@127 222 STM2(&(xo[0]), TI, ovs, &(xo[0]));
cannam@127 223 {
cannam@127 224 V To, Tq, Tl, Tp, Tf, Tk, TJ;
cannam@127 225 To = VBYI(VFMA(LDK(KP951056516), Tm, VMUL(LDK(KP587785252), Tn)));
cannam@127 226 Tq = VBYI(VFNMS(LDK(KP587785252), Tm, VMUL(LDK(KP951056516), Tn)));
cannam@127 227 Tf = VMUL(LDK(KP559016994), VSUB(T7, Te));
cannam@127 228 Tk = VFNMS(LDK(KP250000000), Tj, Ti);
cannam@127 229 Tl = VADD(Tf, Tk);
cannam@127 230 Tp = VSUB(Tk, Tf);
cannam@127 231 TJ = VSUB(Tl, To);
cannam@127 232 STM2(&(xo[2]), TJ, ovs, &(xo[2]));
cannam@127 233 STN2(&(xo[0]), TI, TJ, ovs);
cannam@127 234 TK = VADD(Tq, Tp);
cannam@127 235 STM2(&(xo[14]), TK, ovs, &(xo[2]));
cannam@127 236 TL = VADD(To, Tl);
cannam@127 237 STM2(&(xo[18]), TL, ovs, &(xo[2]));
cannam@127 238 TM = VSUB(Tp, Tq);
cannam@127 239 STM2(&(xo[6]), TM, ovs, &(xo[2]));
cannam@127 240 }
cannam@127 241 {
cannam@127 242 V Tx, TF, TE, TG, TC, TD;
cannam@127 243 Tx = VBYI(VFNMS(LDK(KP587785252), Tw, VMUL(LDK(KP951056516), Tt)));
cannam@127 244 TF = VBYI(VFMA(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tt)));
cannam@127 245 TC = VFNMS(LDK(KP250000000), TB, Ty);
cannam@127 246 TD = VMUL(LDK(KP559016994), VSUB(Tz, TA));
cannam@127 247 TE = VSUB(TC, TD);
cannam@127 248 TG = VADD(TD, TC);
cannam@127 249 {
cannam@127 250 V TN, TO, TP, TQ;
cannam@127 251 TN = VADD(Tx, TE);
cannam@127 252 STM2(&(xo[4]), TN, ovs, &(xo[0]));
cannam@127 253 STN2(&(xo[4]), TN, TM, ovs);
cannam@127 254 TO = VSUB(TG, TF);
cannam@127 255 STM2(&(xo[12]), TO, ovs, &(xo[0]));
cannam@127 256 STN2(&(xo[12]), TO, TK, ovs);
cannam@127 257 TP = VSUB(TE, Tx);
cannam@127 258 STM2(&(xo[16]), TP, ovs, &(xo[0]));
cannam@127 259 STN2(&(xo[16]), TP, TL, ovs);
cannam@127 260 TQ = VADD(TF, TG);
cannam@127 261 STM2(&(xo[8]), TQ, ovs, &(xo[0]));
cannam@127 262 STN2(&(xo[8]), TQ, TH, ovs);
cannam@127 263 }
cannam@127 264 }
cannam@127 265 }
cannam@127 266 }
cannam@127 267 }
cannam@127 268 VLEAVE();
cannam@127 269 }
cannam@127 270
cannam@127 271 static const kdft_desc desc = { 10, XSIMD_STRING("n2fv_10"), {36, 6, 6, 0}, &GENUS, 0, 2, 0, 0 };
cannam@127 272
cannam@127 273 void XSIMD(codelet_n2fv_10) (planner *p) {
cannam@127 274 X(kdft_register) (p, n2fv_10, &desc);
cannam@127 275 }
cannam@127 276
cannam@127 277 #endif /* HAVE_FMA */