annotate src/fftw-3.3.5/dft/simd/common/n1fv_12.c @ 165:7e6e71a29886

Update build for AUDIO_COMPONENT_FIX
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 30 Oct 2019 12:40:34 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:38:40 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-dft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 48 FP additions, 20 FP multiplications,
cannam@127 32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
cannam@127 33 * 49 stack variables, 2 constants, and 24 memory accesses
cannam@127 34 */
cannam@127 35 #include "n1f.h"
cannam@127 36
cannam@127 37 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@127 38 {
cannam@127 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 41 {
cannam@127 42 INT i;
cannam@127 43 const R *xi;
cannam@127 44 R *xo;
cannam@127 45 xi = ri;
cannam@127 46 xo = ro;
cannam@127 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
cannam@127 48 V T1, T6, Tk, Tn, Tc, Td, Tf, Tr, T4, Ts, T9, Tg, Te, Tl;
cannam@127 49 {
cannam@127 50 V T2, T3, T7, T8;
cannam@127 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
cannam@127 52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@127 53 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@127 54 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
cannam@127 55 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
cannam@127 56 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@127 57 Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@127 58 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
cannam@127 59 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
cannam@127 60 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@127 61 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@127 62 Tr = VSUB(T3, T2);
cannam@127 63 T4 = VADD(T2, T3);
cannam@127 64 Ts = VSUB(T8, T7);
cannam@127 65 T9 = VADD(T7, T8);
cannam@127 66 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@127 67 }
cannam@127 68 Te = VSUB(Tc, Td);
cannam@127 69 Tl = VADD(Td, Tc);
cannam@127 70 {
cannam@127 71 V T5, TF, TB, Tt, Ta, TG, Th, To, Tm, TI;
cannam@127 72 T5 = VFNMS(LDK(KP500000000), T4, T1);
cannam@127 73 TF = VADD(T1, T4);
cannam@127 74 TB = VADD(Tr, Ts);
cannam@127 75 Tt = VSUB(Tr, Ts);
cannam@127 76 Ta = VFNMS(LDK(KP500000000), T9, T6);
cannam@127 77 TG = VADD(T6, T9);
cannam@127 78 Th = VSUB(Tf, Tg);
cannam@127 79 To = VADD(Tf, Tg);
cannam@127 80 Tm = VFNMS(LDK(KP500000000), Tl, Tk);
cannam@127 81 TI = VADD(Tk, Tl);
cannam@127 82 {
cannam@127 83 V TH, TL, Tb, Tx, TJ, Tp, Ti, TA;
cannam@127 84 TH = VSUB(TF, TG);
cannam@127 85 TL = VADD(TF, TG);
cannam@127 86 Tb = VSUB(T5, Ta);
cannam@127 87 Tx = VADD(T5, Ta);
cannam@127 88 TJ = VADD(Tn, To);
cannam@127 89 Tp = VFNMS(LDK(KP500000000), To, Tn);
cannam@127 90 Ti = VADD(Te, Th);
cannam@127 91 TA = VSUB(Te, Th);
cannam@127 92 {
cannam@127 93 V Tq, Ty, TK, TM;
cannam@127 94 Tq = VSUB(Tm, Tp);
cannam@127 95 Ty = VADD(Tm, Tp);
cannam@127 96 TK = VSUB(TI, TJ);
cannam@127 97 TM = VADD(TI, TJ);
cannam@127 98 {
cannam@127 99 V TC, TE, Tj, Tv;
cannam@127 100 TC = VMUL(LDK(KP866025403), VSUB(TA, TB));
cannam@127 101 TE = VMUL(LDK(KP866025403), VADD(TB, TA));
cannam@127 102 Tj = VFMA(LDK(KP866025403), Ti, Tb);
cannam@127 103 Tv = VFNMS(LDK(KP866025403), Ti, Tb);
cannam@127 104 {
cannam@127 105 V Tz, TD, Tu, Tw;
cannam@127 106 Tz = VSUB(Tx, Ty);
cannam@127 107 TD = VADD(Tx, Ty);
cannam@127 108 Tu = VFNMS(LDK(KP866025403), Tt, Tq);
cannam@127 109 Tw = VFMA(LDK(KP866025403), Tt, Tq);
cannam@127 110 ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0]));
cannam@127 111 ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0]));
cannam@127 112 ST(&(xo[WS(os, 3)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)]));
cannam@127 113 ST(&(xo[WS(os, 9)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
cannam@127 114 ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0]));
cannam@127 115 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
cannam@127 116 ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tz), ovs, &(xo[0]));
cannam@127 117 ST(&(xo[WS(os, 2)]), VFMAI(TC, Tz), ovs, &(xo[0]));
cannam@127 118 ST(&(xo[WS(os, 5)]), VFNMSI(Tw, Tv), ovs, &(xo[WS(os, 1)]));
cannam@127 119 ST(&(xo[WS(os, 7)]), VFMAI(Tw, Tv), ovs, &(xo[WS(os, 1)]));
cannam@127 120 ST(&(xo[WS(os, 11)]), VFMAI(Tu, Tj), ovs, &(xo[WS(os, 1)]));
cannam@127 121 ST(&(xo[WS(os, 1)]), VFNMSI(Tu, Tj), ovs, &(xo[WS(os, 1)]));
cannam@127 122 }
cannam@127 123 }
cannam@127 124 }
cannam@127 125 }
cannam@127 126 }
cannam@127 127 }
cannam@127 128 }
cannam@127 129 VLEAVE();
cannam@127 130 }
cannam@127 131
cannam@127 132 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 };
cannam@127 133
cannam@127 134 void XSIMD(codelet_n1fv_12) (planner *p) {
cannam@127 135 X(kdft_register) (p, n1fv_12, &desc);
cannam@127 136 }
cannam@127 137
cannam@127 138 #else /* HAVE_FMA */
cannam@127 139
cannam@127 140 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */
cannam@127 141
cannam@127 142 /*
cannam@127 143 * This function contains 48 FP additions, 8 FP multiplications,
cannam@127 144 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
cannam@127 145 * 27 stack variables, 2 constants, and 24 memory accesses
cannam@127 146 */
cannam@127 147 #include "n1f.h"
cannam@127 148
cannam@127 149 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@127 150 {
cannam@127 151 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 152 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 153 {
cannam@127 154 INT i;
cannam@127 155 const R *xi;
cannam@127 156 R *xo;
cannam@127 157 xi = ri;
cannam@127 158 xo = ro;
cannam@127 159 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
cannam@127 160 V T5, Ta, TJ, Ty, Tq, Tp, Tg, Tl, TI, TA, Tz, Tu;
cannam@127 161 {
cannam@127 162 V T1, T6, T4, Tw, T9, Tx;
cannam@127 163 T1 = LD(&(xi[0]), ivs, &(xi[0]));
cannam@127 164 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@127 165 {
cannam@127 166 V T2, T3, T7, T8;
cannam@127 167 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@127 168 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
cannam@127 169 T4 = VADD(T2, T3);
cannam@127 170 Tw = VSUB(T3, T2);
cannam@127 171 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
cannam@127 172 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@127 173 T9 = VADD(T7, T8);
cannam@127 174 Tx = VSUB(T8, T7);
cannam@127 175 }
cannam@127 176 T5 = VADD(T1, T4);
cannam@127 177 Ta = VADD(T6, T9);
cannam@127 178 TJ = VADD(Tw, Tx);
cannam@127 179 Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx));
cannam@127 180 Tq = VFNMS(LDK(KP500000000), T9, T6);
cannam@127 181 Tp = VFNMS(LDK(KP500000000), T4, T1);
cannam@127 182 }
cannam@127 183 {
cannam@127 184 V Tc, Th, Tf, Ts, Tk, Tt;
cannam@127 185 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@127 186 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
cannam@127 187 {
cannam@127 188 V Td, Te, Ti, Tj;
cannam@127 189 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@127 190 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
cannam@127 191 Tf = VADD(Td, Te);
cannam@127 192 Ts = VSUB(Te, Td);
cannam@127 193 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@127 194 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@127 195 Tk = VADD(Ti, Tj);
cannam@127 196 Tt = VSUB(Tj, Ti);
cannam@127 197 }
cannam@127 198 Tg = VADD(Tc, Tf);
cannam@127 199 Tl = VADD(Th, Tk);
cannam@127 200 TI = VADD(Ts, Tt);
cannam@127 201 TA = VFNMS(LDK(KP500000000), Tk, Th);
cannam@127 202 Tz = VFNMS(LDK(KP500000000), Tf, Tc);
cannam@127 203 Tu = VMUL(LDK(KP866025403), VSUB(Ts, Tt));
cannam@127 204 }
cannam@127 205 {
cannam@127 206 V Tb, Tm, Tn, To;
cannam@127 207 Tb = VSUB(T5, Ta);
cannam@127 208 Tm = VBYI(VSUB(Tg, Tl));
cannam@127 209 ST(&(xo[WS(os, 9)]), VSUB(Tb, Tm), ovs, &(xo[WS(os, 1)]));
cannam@127 210 ST(&(xo[WS(os, 3)]), VADD(Tb, Tm), ovs, &(xo[WS(os, 1)]));
cannam@127 211 Tn = VADD(T5, Ta);
cannam@127 212 To = VADD(Tg, Tl);
cannam@127 213 ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0]));
cannam@127 214 ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0]));
cannam@127 215 }
cannam@127 216 {
cannam@127 217 V Tv, TE, TC, TD, Tr, TB;
cannam@127 218 Tr = VSUB(Tp, Tq);
cannam@127 219 Tv = VSUB(Tr, Tu);
cannam@127 220 TE = VADD(Tr, Tu);
cannam@127 221 TB = VSUB(Tz, TA);
cannam@127 222 TC = VBYI(VADD(Ty, TB));
cannam@127 223 TD = VBYI(VSUB(Ty, TB));
cannam@127 224 ST(&(xo[WS(os, 5)]), VSUB(Tv, TC), ovs, &(xo[WS(os, 1)]));
cannam@127 225 ST(&(xo[WS(os, 11)]), VSUB(TE, TD), ovs, &(xo[WS(os, 1)]));
cannam@127 226 ST(&(xo[WS(os, 7)]), VADD(TC, Tv), ovs, &(xo[WS(os, 1)]));
cannam@127 227 ST(&(xo[WS(os, 1)]), VADD(TD, TE), ovs, &(xo[WS(os, 1)]));
cannam@127 228 }
cannam@127 229 {
cannam@127 230 V TK, TM, TH, TL, TF, TG;
cannam@127 231 TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ)));
cannam@127 232 TM = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI)));
cannam@127 233 TF = VADD(Tp, Tq);
cannam@127 234 TG = VADD(Tz, TA);
cannam@127 235 TH = VSUB(TF, TG);
cannam@127 236 TL = VADD(TF, TG);
cannam@127 237 ST(&(xo[WS(os, 10)]), VSUB(TH, TK), ovs, &(xo[0]));
cannam@127 238 ST(&(xo[WS(os, 4)]), VADD(TL, TM), ovs, &(xo[0]));
cannam@127 239 ST(&(xo[WS(os, 2)]), VADD(TH, TK), ovs, &(xo[0]));
cannam@127 240 ST(&(xo[WS(os, 8)]), VSUB(TL, TM), ovs, &(xo[0]));
cannam@127 241 }
cannam@127 242 }
cannam@127 243 }
cannam@127 244 VLEAVE();
cannam@127 245 }
cannam@127 246
cannam@127 247 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 };
cannam@127 248
cannam@127 249 void XSIMD(codelet_n1fv_12) (planner *p) {
cannam@127 250 X(kdft_register) (p, n1fv_12, &desc);
cannam@127 251 }
cannam@127 252
cannam@127 253 #endif /* HAVE_FMA */