annotate src/fftw-3.3.3/dft/simd/common/t1fv_16.c @ 165:7e6e71a29886

Update build for AUDIO_COMPONENT_FIX
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 30 Oct 2019 12:40:34 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:38:05 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-dft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t1fv_16 -include t1f.h */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 87 FP additions, 64 FP multiplications,
cannam@95 32 * (or, 53 additions, 30 multiplications, 34 fused multiply/add),
cannam@95 33 * 61 stack variables, 3 constants, and 32 memory accesses
cannam@95 34 */
cannam@95 35 #include "t1f.h"
cannam@95 36
cannam@95 37 static void t1fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
cannam@95 40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
cannam@95 41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@95 42 {
cannam@95 43 INT m;
cannam@95 44 R *x;
cannam@95 45 x = ri;
cannam@95 46 for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@95 47 V TO, Ta, TJ, TP, T14, Tq, T1i, T10, T1b, T1l, T13, T1c, TR, Tl, T15;
cannam@95 48 V Tv;
cannam@95 49 {
cannam@95 50 V Tc, TW, T4, T19, T9, TD, TI, Tj, TZ, T1a, Te, Th, Tn, Tr, Tu;
cannam@95 51 V Tp;
cannam@95 52 {
cannam@95 53 V T1, T2, T5, T7;
cannam@95 54 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@95 55 T2 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@95 56 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 57 T7 = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@95 58 {
cannam@95 59 V Tz, TG, TB, TE;
cannam@95 60 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@95 61 TG = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@95 62 TB = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 63 TE = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 64 {
cannam@95 65 V Ti, TY, TX, Td, Tg, Tm, Tt, To;
cannam@95 66 {
cannam@95 67 V T3, T6, T8, TA, TH, TC, TF, Tb;
cannam@95 68 Tb = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 69 T3 = BYTWJ(&(W[TWVL * 14]), T2);
cannam@95 70 T6 = BYTWJ(&(W[TWVL * 6]), T5);
cannam@95 71 T8 = BYTWJ(&(W[TWVL * 22]), T7);
cannam@95 72 TA = BYTWJ(&(W[TWVL * 26]), Tz);
cannam@95 73 TH = BYTWJ(&(W[TWVL * 18]), TG);
cannam@95 74 TC = BYTWJ(&(W[TWVL * 10]), TB);
cannam@95 75 TF = BYTWJ(&(W[TWVL * 2]), TE);
cannam@95 76 Tc = BYTWJ(&(W[0]), Tb);
cannam@95 77 TW = VSUB(T1, T3);
cannam@95 78 T4 = VADD(T1, T3);
cannam@95 79 T19 = VSUB(T6, T8);
cannam@95 80 T9 = VADD(T6, T8);
cannam@95 81 Ti = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@95 82 TD = VADD(TA, TC);
cannam@95 83 TY = VSUB(TA, TC);
cannam@95 84 TI = VADD(TF, TH);
cannam@95 85 TX = VSUB(TF, TH);
cannam@95 86 }
cannam@95 87 Td = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@95 88 Tg = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 89 Tm = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
cannam@95 90 Tj = BYTWJ(&(W[TWVL * 24]), Ti);
cannam@95 91 Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@95 92 To = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 93 TZ = VADD(TX, TY);
cannam@95 94 T1a = VSUB(TY, TX);
cannam@95 95 Te = BYTWJ(&(W[TWVL * 16]), Td);
cannam@95 96 Th = BYTWJ(&(W[TWVL * 8]), Tg);
cannam@95 97 Tn = BYTWJ(&(W[TWVL * 28]), Tm);
cannam@95 98 Tr = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 99 Tu = BYTWJ(&(W[TWVL * 20]), Tt);
cannam@95 100 Tp = BYTWJ(&(W[TWVL * 12]), To);
cannam@95 101 }
cannam@95 102 }
cannam@95 103 }
cannam@95 104 {
cannam@95 105 V Tf, T11, Tk, T12, Ts;
cannam@95 106 TO = VADD(T4, T9);
cannam@95 107 Ta = VSUB(T4, T9);
cannam@95 108 TJ = VSUB(TD, TI);
cannam@95 109 TP = VADD(TI, TD);
cannam@95 110 Tf = VADD(Tc, Te);
cannam@95 111 T11 = VSUB(Tc, Te);
cannam@95 112 Tk = VADD(Th, Tj);
cannam@95 113 T12 = VSUB(Th, Tj);
cannam@95 114 Ts = BYTWJ(&(W[TWVL * 4]), Tr);
cannam@95 115 T14 = VSUB(Tn, Tp);
cannam@95 116 Tq = VADD(Tn, Tp);
cannam@95 117 T1i = VFNMS(LDK(KP707106781), TZ, TW);
cannam@95 118 T10 = VFMA(LDK(KP707106781), TZ, TW);
cannam@95 119 T1b = VFNMS(LDK(KP707106781), T1a, T19);
cannam@95 120 T1l = VFMA(LDK(KP707106781), T1a, T19);
cannam@95 121 T13 = VFNMS(LDK(KP414213562), T12, T11);
cannam@95 122 T1c = VFMA(LDK(KP414213562), T11, T12);
cannam@95 123 TR = VADD(Tf, Tk);
cannam@95 124 Tl = VSUB(Tf, Tk);
cannam@95 125 T15 = VSUB(Tu, Ts);
cannam@95 126 Tv = VADD(Ts, Tu);
cannam@95 127 }
cannam@95 128 }
cannam@95 129 {
cannam@95 130 V T1d, T16, TS, Tw, TU, TQ;
cannam@95 131 T1d = VFMA(LDK(KP414213562), T14, T15);
cannam@95 132 T16 = VFNMS(LDK(KP414213562), T15, T14);
cannam@95 133 TS = VADD(Tq, Tv);
cannam@95 134 Tw = VSUB(Tq, Tv);
cannam@95 135 TU = VSUB(TO, TP);
cannam@95 136 TQ = VADD(TO, TP);
cannam@95 137 {
cannam@95 138 V T1e, T1j, T17, T1m;
cannam@95 139 T1e = VSUB(T1c, T1d);
cannam@95 140 T1j = VADD(T1c, T1d);
cannam@95 141 T17 = VADD(T13, T16);
cannam@95 142 T1m = VSUB(T16, T13);
cannam@95 143 {
cannam@95 144 V TV, TT, TK, Tx;
cannam@95 145 TV = VSUB(TS, TR);
cannam@95 146 TT = VADD(TR, TS);
cannam@95 147 TK = VSUB(Tw, Tl);
cannam@95 148 Tx = VADD(Tl, Tw);
cannam@95 149 {
cannam@95 150 V T1h, T1f, T1o, T1k;
cannam@95 151 T1h = VFMA(LDK(KP923879532), T1e, T1b);
cannam@95 152 T1f = VFNMS(LDK(KP923879532), T1e, T1b);
cannam@95 153 T1o = VFMA(LDK(KP923879532), T1j, T1i);
cannam@95 154 T1k = VFNMS(LDK(KP923879532), T1j, T1i);
cannam@95 155 {
cannam@95 156 V T1g, T18, T1p, T1n;
cannam@95 157 T1g = VFMA(LDK(KP923879532), T17, T10);
cannam@95 158 T18 = VFNMS(LDK(KP923879532), T17, T10);
cannam@95 159 T1p = VFMA(LDK(KP923879532), T1m, T1l);
cannam@95 160 T1n = VFNMS(LDK(KP923879532), T1m, T1l);
cannam@95 161 ST(&(x[WS(rs, 12)]), VFNMSI(TV, TU), ms, &(x[0]));
cannam@95 162 ST(&(x[WS(rs, 4)]), VFMAI(TV, TU), ms, &(x[0]));
cannam@95 163 ST(&(x[0]), VADD(TQ, TT), ms, &(x[0]));
cannam@95 164 ST(&(x[WS(rs, 8)]), VSUB(TQ, TT), ms, &(x[0]));
cannam@95 165 {
cannam@95 166 V TN, TL, TM, Ty;
cannam@95 167 TN = VFMA(LDK(KP707106781), TK, TJ);
cannam@95 168 TL = VFNMS(LDK(KP707106781), TK, TJ);
cannam@95 169 TM = VFMA(LDK(KP707106781), Tx, Ta);
cannam@95 170 Ty = VFNMS(LDK(KP707106781), Tx, Ta);
cannam@95 171 ST(&(x[WS(rs, 1)]), VFNMSI(T1h, T1g), ms, &(x[WS(rs, 1)]));
cannam@95 172 ST(&(x[WS(rs, 15)]), VFMAI(T1h, T1g), ms, &(x[WS(rs, 1)]));
cannam@95 173 ST(&(x[WS(rs, 7)]), VFMAI(T1f, T18), ms, &(x[WS(rs, 1)]));
cannam@95 174 ST(&(x[WS(rs, 9)]), VFNMSI(T1f, T18), ms, &(x[WS(rs, 1)]));
cannam@95 175 ST(&(x[WS(rs, 3)]), VFMAI(T1p, T1o), ms, &(x[WS(rs, 1)]));
cannam@95 176 ST(&(x[WS(rs, 13)]), VFNMSI(T1p, T1o), ms, &(x[WS(rs, 1)]));
cannam@95 177 ST(&(x[WS(rs, 11)]), VFMAI(T1n, T1k), ms, &(x[WS(rs, 1)]));
cannam@95 178 ST(&(x[WS(rs, 5)]), VFNMSI(T1n, T1k), ms, &(x[WS(rs, 1)]));
cannam@95 179 ST(&(x[WS(rs, 14)]), VFNMSI(TN, TM), ms, &(x[0]));
cannam@95 180 ST(&(x[WS(rs, 2)]), VFMAI(TN, TM), ms, &(x[0]));
cannam@95 181 ST(&(x[WS(rs, 10)]), VFMAI(TL, Ty), ms, &(x[0]));
cannam@95 182 ST(&(x[WS(rs, 6)]), VFNMSI(TL, Ty), ms, &(x[0]));
cannam@95 183 }
cannam@95 184 }
cannam@95 185 }
cannam@95 186 }
cannam@95 187 }
cannam@95 188 }
cannam@95 189 }
cannam@95 190 }
cannam@95 191 VLEAVE();
cannam@95 192 }
cannam@95 193
cannam@95 194 static const tw_instr twinstr[] = {
cannam@95 195 VTW(0, 1),
cannam@95 196 VTW(0, 2),
cannam@95 197 VTW(0, 3),
cannam@95 198 VTW(0, 4),
cannam@95 199 VTW(0, 5),
cannam@95 200 VTW(0, 6),
cannam@95 201 VTW(0, 7),
cannam@95 202 VTW(0, 8),
cannam@95 203 VTW(0, 9),
cannam@95 204 VTW(0, 10),
cannam@95 205 VTW(0, 11),
cannam@95 206 VTW(0, 12),
cannam@95 207 VTW(0, 13),
cannam@95 208 VTW(0, 14),
cannam@95 209 VTW(0, 15),
cannam@95 210 {TW_NEXT, VL, 0}
cannam@95 211 };
cannam@95 212
cannam@95 213 static const ct_desc desc = { 16, XSIMD_STRING("t1fv_16"), twinstr, &GENUS, {53, 30, 34, 0}, 0, 0, 0 };
cannam@95 214
cannam@95 215 void XSIMD(codelet_t1fv_16) (planner *p) {
cannam@95 216 X(kdft_dit_register) (p, t1fv_16, &desc);
cannam@95 217 }
cannam@95 218 #else /* HAVE_FMA */
cannam@95 219
cannam@95 220 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t1fv_16 -include t1f.h */
cannam@95 221
cannam@95 222 /*
cannam@95 223 * This function contains 87 FP additions, 42 FP multiplications,
cannam@95 224 * (or, 83 additions, 38 multiplications, 4 fused multiply/add),
cannam@95 225 * 36 stack variables, 3 constants, and 32 memory accesses
cannam@95 226 */
cannam@95 227 #include "t1f.h"
cannam@95 228
cannam@95 229 static void t1fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 230 {
cannam@95 231 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
cannam@95 232 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
cannam@95 233 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@95 234 {
cannam@95 235 INT m;
cannam@95 236 R *x;
cannam@95 237 x = ri;
cannam@95 238 for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@95 239 V TJ, T10, TD, T11, T1b, T1c, Ty, TK, T16, T17, T18, Tb, TN, T13, T14;
cannam@95 240 V T15, Tm, TM, TG, TI, TH;
cannam@95 241 TG = LD(&(x[0]), ms, &(x[0]));
cannam@95 242 TH = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@95 243 TI = BYTWJ(&(W[TWVL * 14]), TH);
cannam@95 244 TJ = VSUB(TG, TI);
cannam@95 245 T10 = VADD(TG, TI);
cannam@95 246 {
cannam@95 247 V TA, TC, Tz, TB;
cannam@95 248 Tz = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 249 TA = BYTWJ(&(W[TWVL * 6]), Tz);
cannam@95 250 TB = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@95 251 TC = BYTWJ(&(W[TWVL * 22]), TB);
cannam@95 252 TD = VSUB(TA, TC);
cannam@95 253 T11 = VADD(TA, TC);
cannam@95 254 }
cannam@95 255 {
cannam@95 256 V Tp, Tw, Tr, Tu, Ts, Tx;
cannam@95 257 {
cannam@95 258 V To, Tv, Tq, Tt;
cannam@95 259 To = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@95 260 Tp = BYTWJ(&(W[TWVL * 26]), To);
cannam@95 261 Tv = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@95 262 Tw = BYTWJ(&(W[TWVL * 18]), Tv);
cannam@95 263 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 264 Tr = BYTWJ(&(W[TWVL * 10]), Tq);
cannam@95 265 Tt = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 266 Tu = BYTWJ(&(W[TWVL * 2]), Tt);
cannam@95 267 }
cannam@95 268 T1b = VADD(Tp, Tr);
cannam@95 269 T1c = VADD(Tu, Tw);
cannam@95 270 Ts = VSUB(Tp, Tr);
cannam@95 271 Tx = VSUB(Tu, Tw);
cannam@95 272 Ty = VMUL(LDK(KP707106781), VSUB(Ts, Tx));
cannam@95 273 TK = VMUL(LDK(KP707106781), VADD(Tx, Ts));
cannam@95 274 }
cannam@95 275 {
cannam@95 276 V T2, T9, T4, T7, T5, Ta;
cannam@95 277 {
cannam@95 278 V T1, T8, T3, T6;
cannam@95 279 T1 = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
cannam@95 280 T2 = BYTWJ(&(W[TWVL * 28]), T1);
cannam@95 281 T8 = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@95 282 T9 = BYTWJ(&(W[TWVL * 20]), T8);
cannam@95 283 T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 284 T4 = BYTWJ(&(W[TWVL * 12]), T3);
cannam@95 285 T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 286 T7 = BYTWJ(&(W[TWVL * 4]), T6);
cannam@95 287 }
cannam@95 288 T16 = VADD(T2, T4);
cannam@95 289 T17 = VADD(T7, T9);
cannam@95 290 T18 = VSUB(T16, T17);
cannam@95 291 T5 = VSUB(T2, T4);
cannam@95 292 Ta = VSUB(T7, T9);
cannam@95 293 Tb = VFNMS(LDK(KP923879532), Ta, VMUL(LDK(KP382683432), T5));
cannam@95 294 TN = VFMA(LDK(KP923879532), T5, VMUL(LDK(KP382683432), Ta));
cannam@95 295 }
cannam@95 296 {
cannam@95 297 V Td, Tk, Tf, Ti, Tg, Tl;
cannam@95 298 {
cannam@95 299 V Tc, Tj, Te, Th;
cannam@95 300 Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 301 Td = BYTWJ(&(W[0]), Tc);
cannam@95 302 Tj = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@95 303 Tk = BYTWJ(&(W[TWVL * 24]), Tj);
cannam@95 304 Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@95 305 Tf = BYTWJ(&(W[TWVL * 16]), Te);
cannam@95 306 Th = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 307 Ti = BYTWJ(&(W[TWVL * 8]), Th);
cannam@95 308 }
cannam@95 309 T13 = VADD(Td, Tf);
cannam@95 310 T14 = VADD(Ti, Tk);
cannam@95 311 T15 = VSUB(T13, T14);
cannam@95 312 Tg = VSUB(Td, Tf);
cannam@95 313 Tl = VSUB(Ti, Tk);
cannam@95 314 Tm = VFMA(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), Tl));
cannam@95 315 TM = VFNMS(LDK(KP382683432), Tl, VMUL(LDK(KP923879532), Tg));
cannam@95 316 }
cannam@95 317 {
cannam@95 318 V T1a, T1g, T1f, T1h;
cannam@95 319 {
cannam@95 320 V T12, T19, T1d, T1e;
cannam@95 321 T12 = VSUB(T10, T11);
cannam@95 322 T19 = VMUL(LDK(KP707106781), VADD(T15, T18));
cannam@95 323 T1a = VADD(T12, T19);
cannam@95 324 T1g = VSUB(T12, T19);
cannam@95 325 T1d = VSUB(T1b, T1c);
cannam@95 326 T1e = VMUL(LDK(KP707106781), VSUB(T18, T15));
cannam@95 327 T1f = VBYI(VADD(T1d, T1e));
cannam@95 328 T1h = VBYI(VSUB(T1e, T1d));
cannam@95 329 }
cannam@95 330 ST(&(x[WS(rs, 14)]), VSUB(T1a, T1f), ms, &(x[0]));
cannam@95 331 ST(&(x[WS(rs, 6)]), VADD(T1g, T1h), ms, &(x[0]));
cannam@95 332 ST(&(x[WS(rs, 2)]), VADD(T1a, T1f), ms, &(x[0]));
cannam@95 333 ST(&(x[WS(rs, 10)]), VSUB(T1g, T1h), ms, &(x[0]));
cannam@95 334 }
cannam@95 335 {
cannam@95 336 V T1k, T1o, T1n, T1p;
cannam@95 337 {
cannam@95 338 V T1i, T1j, T1l, T1m;
cannam@95 339 T1i = VADD(T10, T11);
cannam@95 340 T1j = VADD(T1c, T1b);
cannam@95 341 T1k = VADD(T1i, T1j);
cannam@95 342 T1o = VSUB(T1i, T1j);
cannam@95 343 T1l = VADD(T13, T14);
cannam@95 344 T1m = VADD(T16, T17);
cannam@95 345 T1n = VADD(T1l, T1m);
cannam@95 346 T1p = VBYI(VSUB(T1m, T1l));
cannam@95 347 }
cannam@95 348 ST(&(x[WS(rs, 8)]), VSUB(T1k, T1n), ms, &(x[0]));
cannam@95 349 ST(&(x[WS(rs, 4)]), VADD(T1o, T1p), ms, &(x[0]));
cannam@95 350 ST(&(x[0]), VADD(T1k, T1n), ms, &(x[0]));
cannam@95 351 ST(&(x[WS(rs, 12)]), VSUB(T1o, T1p), ms, &(x[0]));
cannam@95 352 }
cannam@95 353 {
cannam@95 354 V TF, TQ, TP, TR;
cannam@95 355 {
cannam@95 356 V Tn, TE, TL, TO;
cannam@95 357 Tn = VSUB(Tb, Tm);
cannam@95 358 TE = VSUB(Ty, TD);
cannam@95 359 TF = VBYI(VSUB(Tn, TE));
cannam@95 360 TQ = VBYI(VADD(TE, Tn));
cannam@95 361 TL = VADD(TJ, TK);
cannam@95 362 TO = VADD(TM, TN);
cannam@95 363 TP = VSUB(TL, TO);
cannam@95 364 TR = VADD(TL, TO);
cannam@95 365 }
cannam@95 366 ST(&(x[WS(rs, 7)]), VADD(TF, TP), ms, &(x[WS(rs, 1)]));
cannam@95 367 ST(&(x[WS(rs, 15)]), VSUB(TR, TQ), ms, &(x[WS(rs, 1)]));
cannam@95 368 ST(&(x[WS(rs, 9)]), VSUB(TP, TF), ms, &(x[WS(rs, 1)]));
cannam@95 369 ST(&(x[WS(rs, 1)]), VADD(TQ, TR), ms, &(x[WS(rs, 1)]));
cannam@95 370 }
cannam@95 371 {
cannam@95 372 V TU, TY, TX, TZ;
cannam@95 373 {
cannam@95 374 V TS, TT, TV, TW;
cannam@95 375 TS = VSUB(TJ, TK);
cannam@95 376 TT = VADD(Tm, Tb);
cannam@95 377 TU = VADD(TS, TT);
cannam@95 378 TY = VSUB(TS, TT);
cannam@95 379 TV = VADD(TD, Ty);
cannam@95 380 TW = VSUB(TN, TM);
cannam@95 381 TX = VBYI(VADD(TV, TW));
cannam@95 382 TZ = VBYI(VSUB(TW, TV));
cannam@95 383 }
cannam@95 384 ST(&(x[WS(rs, 13)]), VSUB(TU, TX), ms, &(x[WS(rs, 1)]));
cannam@95 385 ST(&(x[WS(rs, 5)]), VADD(TY, TZ), ms, &(x[WS(rs, 1)]));
cannam@95 386 ST(&(x[WS(rs, 3)]), VADD(TU, TX), ms, &(x[WS(rs, 1)]));
cannam@95 387 ST(&(x[WS(rs, 11)]), VSUB(TY, TZ), ms, &(x[WS(rs, 1)]));
cannam@95 388 }
cannam@95 389 }
cannam@95 390 }
cannam@95 391 VLEAVE();
cannam@95 392 }
cannam@95 393
cannam@95 394 static const tw_instr twinstr[] = {
cannam@95 395 VTW(0, 1),
cannam@95 396 VTW(0, 2),
cannam@95 397 VTW(0, 3),
cannam@95 398 VTW(0, 4),
cannam@95 399 VTW(0, 5),
cannam@95 400 VTW(0, 6),
cannam@95 401 VTW(0, 7),
cannam@95 402 VTW(0, 8),
cannam@95 403 VTW(0, 9),
cannam@95 404 VTW(0, 10),
cannam@95 405 VTW(0, 11),
cannam@95 406 VTW(0, 12),
cannam@95 407 VTW(0, 13),
cannam@95 408 VTW(0, 14),
cannam@95 409 VTW(0, 15),
cannam@95 410 {TW_NEXT, VL, 0}
cannam@95 411 };
cannam@95 412
cannam@95 413 static const ct_desc desc = { 16, XSIMD_STRING("t1fv_16"), twinstr, &GENUS, {83, 38, 4, 0}, 0, 0, 0 };
cannam@95 414
cannam@95 415 void XSIMD(codelet_t1fv_16) (planner *p) {
cannam@95 416 X(kdft_dit_register) (p, t1fv_16, &desc);
cannam@95 417 }
cannam@95 418 #endif /* HAVE_FMA */