annotate win64-msvc/include/kj/common.h @ 69:7aeed7906520

Add Opus sources and macOS builds
author Chris Cannam
date Wed, 23 Jan 2019 13:48:08 +0000
parents 0f2d93caa50c
children
rev   line source
Chris@63 1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
Chris@63 2 // Licensed under the MIT License:
Chris@63 3 //
Chris@63 4 // Permission is hereby granted, free of charge, to any person obtaining a copy
Chris@63 5 // of this software and associated documentation files (the "Software"), to deal
Chris@63 6 // in the Software without restriction, including without limitation the rights
Chris@63 7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
Chris@63 8 // copies of the Software, and to permit persons to whom the Software is
Chris@63 9 // furnished to do so, subject to the following conditions:
Chris@63 10 //
Chris@63 11 // The above copyright notice and this permission notice shall be included in
Chris@63 12 // all copies or substantial portions of the Software.
Chris@63 13 //
Chris@63 14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
Chris@63 15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
Chris@63 16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
Chris@63 17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
Chris@63 18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
Chris@63 19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
Chris@63 20 // THE SOFTWARE.
Chris@63 21
Chris@63 22 // Header that should be #included by everyone.
Chris@63 23 //
Chris@63 24 // This defines very simple utilities that are widely applicable.
Chris@63 25
Chris@63 26 #ifndef KJ_COMMON_H_
Chris@63 27 #define KJ_COMMON_H_
Chris@63 28
Chris@63 29 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
Chris@63 30 #pragma GCC system_header
Chris@63 31 #endif
Chris@63 32
Chris@63 33 #ifndef KJ_NO_COMPILER_CHECK
Chris@63 34 #if __cplusplus < 201103L && !__CDT_PARSER__ && !_MSC_VER
Chris@63 35 #error "This code requires C++11. Either your compiler does not support it or it is not enabled."
Chris@63 36 #ifdef __GNUC__
Chris@63 37 // Compiler claims compatibility with GCC, so presumably supports -std.
Chris@63 38 #error "Pass -std=c++11 on the compiler command line to enable C++11."
Chris@63 39 #endif
Chris@63 40 #endif
Chris@63 41
Chris@63 42 #ifdef __GNUC__
Chris@63 43 #if __clang__
Chris@63 44 #if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ < 2)
Chris@63 45 #warning "This library requires at least Clang 3.2."
Chris@63 46 #elif defined(__apple_build_version__) && __apple_build_version__ <= 4250028
Chris@63 47 #warning "This library requires at least Clang 3.2. XCode 4.6's Clang, which claims to be "\
Chris@63 48 "version 4.2 (wat?), is actually built from some random SVN revision between 3.1 "\
Chris@63 49 "and 3.2. Unfortunately, it is insufficient for compiling this library. You can "\
Chris@63 50 "download the real Clang 3.2 (or newer) from the Clang web site. Step-by-step "\
Chris@63 51 "instructions can be found in Cap'n Proto's documentation: "\
Chris@63 52 "http://kentonv.github.io/capnproto/install.html#clang_32_on_mac_osx"
Chris@63 53 #elif __cplusplus >= 201103L && !__has_include(<initializer_list>)
Chris@63 54 #warning "Your compiler supports C++11 but your C++ standard library does not. If your "\
Chris@63 55 "system has libc++ installed (as should be the case on e.g. Mac OSX), try adding "\
Chris@63 56 "-stdlib=libc++ to your CXXFLAGS."
Chris@63 57 #endif
Chris@63 58 #else
Chris@63 59 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 7)
Chris@63 60 #warning "This library requires at least GCC 4.7."
Chris@63 61 #endif
Chris@63 62 #endif
Chris@63 63 #elif defined(_MSC_VER)
Chris@63 64 #if _MSC_VER < 1900
Chris@63 65 #error "You need Visual Studio 2015 or better to compile this code."
Chris@63 66 #endif
Chris@63 67 #else
Chris@63 68 #warning "I don't recognize your compiler. As of this writing, Clang and GCC are the only "\
Chris@63 69 "known compilers with enough C++11 support for this library. "\
Chris@63 70 "#define KJ_NO_COMPILER_CHECK to make this warning go away."
Chris@63 71 #endif
Chris@63 72 #endif
Chris@63 73
Chris@63 74 #include <stddef.h>
Chris@63 75 #include <initializer_list>
Chris@63 76
Chris@63 77 #if __linux__ && __cplusplus > 201200L
Chris@63 78 // Hack around stdlib bug with C++14 that exists on some Linux systems.
Chris@63 79 // Apparently in this mode the C library decides not to define gets() but the C++ library still
Chris@63 80 // tries to import it into the std namespace. This bug has been fixed at the source but is still
Chris@63 81 // widely present in the wild e.g. on Ubuntu 14.04.
Chris@63 82 #undef _GLIBCXX_HAVE_GETS
Chris@63 83 #endif
Chris@63 84
Chris@63 85 #if defined(_MSC_VER)
Chris@63 86 #ifndef NOMINMAX
Chris@63 87 #define NOMINMAX 1
Chris@63 88 #endif
Chris@63 89 #include <intrin.h> // __popcnt
Chris@63 90 #endif
Chris@63 91
Chris@63 92 // =======================================================================================
Chris@63 93
Chris@63 94 namespace kj {
Chris@63 95
Chris@63 96 typedef unsigned int uint;
Chris@63 97 typedef unsigned char byte;
Chris@63 98
Chris@63 99 // =======================================================================================
Chris@63 100 // Common macros, especially for common yet compiler-specific features.
Chris@63 101
Chris@63 102 // Detect whether RTTI and exceptions are enabled, assuming they are unless we have specific
Chris@63 103 // evidence to the contrary. Clients can always define KJ_NO_RTTI or KJ_NO_EXCEPTIONS explicitly
Chris@63 104 // to override these checks.
Chris@63 105 #ifdef __GNUC__
Chris@63 106 #if !defined(KJ_NO_RTTI) && !__GXX_RTTI
Chris@63 107 #define KJ_NO_RTTI 1
Chris@63 108 #endif
Chris@63 109 #if !defined(KJ_NO_EXCEPTIONS) && !__EXCEPTIONS
Chris@63 110 #define KJ_NO_EXCEPTIONS 1
Chris@63 111 #endif
Chris@63 112 #elif defined(_MSC_VER)
Chris@63 113 #if !defined(KJ_NO_RTTI) && !defined(_CPPRTTI)
Chris@63 114 #define KJ_NO_RTTI 1
Chris@63 115 #endif
Chris@63 116 #if !defined(KJ_NO_EXCEPTIONS) && !defined(_CPPUNWIND)
Chris@63 117 #define KJ_NO_EXCEPTIONS 1
Chris@63 118 #endif
Chris@63 119 #endif
Chris@63 120
Chris@63 121 #if !defined(KJ_DEBUG) && !defined(KJ_NDEBUG)
Chris@63 122 // Heuristically decide whether to enable debug mode. If DEBUG or NDEBUG is defined, use that.
Chris@63 123 // Otherwise, fall back to checking whether optimization is enabled.
Chris@63 124 #if defined(DEBUG) || defined(_DEBUG)
Chris@63 125 #define KJ_DEBUG
Chris@63 126 #elif defined(NDEBUG)
Chris@63 127 #define KJ_NDEBUG
Chris@63 128 #elif __OPTIMIZE__
Chris@63 129 #define KJ_NDEBUG
Chris@63 130 #else
Chris@63 131 #define KJ_DEBUG
Chris@63 132 #endif
Chris@63 133 #endif
Chris@63 134
Chris@63 135 #define KJ_DISALLOW_COPY(classname) \
Chris@63 136 classname(const classname&) = delete; \
Chris@63 137 classname& operator=(const classname&) = delete
Chris@63 138 // Deletes the implicit copy constructor and assignment operator.
Chris@63 139
Chris@63 140 #ifdef __GNUC__
Chris@63 141 #define KJ_LIKELY(condition) __builtin_expect(condition, true)
Chris@63 142 #define KJ_UNLIKELY(condition) __builtin_expect(condition, false)
Chris@63 143 // Branch prediction macros. Evaluates to the condition given, but also tells the compiler that we
Chris@63 144 // expect the condition to be true/false enough of the time that it's worth hard-coding branch
Chris@63 145 // prediction.
Chris@63 146 #else
Chris@63 147 #define KJ_LIKELY(condition) (condition)
Chris@63 148 #define KJ_UNLIKELY(condition) (condition)
Chris@63 149 #endif
Chris@63 150
Chris@63 151 #if defined(KJ_DEBUG) || __NO_INLINE__
Chris@63 152 #define KJ_ALWAYS_INLINE(...) inline __VA_ARGS__
Chris@63 153 // Don't force inline in debug mode.
Chris@63 154 #else
Chris@63 155 #if defined(_MSC_VER)
Chris@63 156 #define KJ_ALWAYS_INLINE(...) __forceinline __VA_ARGS__
Chris@63 157 #else
Chris@63 158 #define KJ_ALWAYS_INLINE(...) inline __VA_ARGS__ __attribute__((always_inline))
Chris@63 159 #endif
Chris@63 160 // Force a function to always be inlined. Apply only to the prototype, not to the definition.
Chris@63 161 #endif
Chris@63 162
Chris@63 163 #if defined(_MSC_VER)
Chris@63 164 #define KJ_NOINLINE __declspec(noinline)
Chris@63 165 #else
Chris@63 166 #define KJ_NOINLINE __attribute__((noinline))
Chris@63 167 #endif
Chris@63 168
Chris@63 169 #if defined(_MSC_VER)
Chris@63 170 #define KJ_NORETURN(prototype) __declspec(noreturn) prototype
Chris@63 171 #define KJ_UNUSED
Chris@63 172 #define KJ_WARN_UNUSED_RESULT
Chris@63 173 // TODO(msvc): KJ_WARN_UNUSED_RESULT can use _Check_return_ on MSVC, but it's a prefix, so
Chris@63 174 // wrapping the whole prototype is needed. http://msdn.microsoft.com/en-us/library/jj159529.aspx
Chris@63 175 // Similarly, KJ_UNUSED could use __pragma(warning(suppress:...)), but again that's a prefix.
Chris@63 176 #else
Chris@63 177 #define KJ_NORETURN(prototype) prototype __attribute__((noreturn))
Chris@63 178 #define KJ_UNUSED __attribute__((unused))
Chris@63 179 #define KJ_WARN_UNUSED_RESULT __attribute__((warn_unused_result))
Chris@63 180 #endif
Chris@63 181
Chris@63 182 #if __clang__
Chris@63 183 #define KJ_UNUSED_MEMBER __attribute__((unused))
Chris@63 184 // Inhibits "unused" warning for member variables. Only Clang produces such a warning, while GCC
Chris@63 185 // complains if the attribute is set on members.
Chris@63 186 #else
Chris@63 187 #define KJ_UNUSED_MEMBER
Chris@63 188 #endif
Chris@63 189
Chris@63 190 #if __clang__
Chris@63 191 #define KJ_DEPRECATED(reason) \
Chris@63 192 __attribute__((deprecated(reason)))
Chris@63 193 #define KJ_UNAVAILABLE(reason) \
Chris@63 194 __attribute__((unavailable(reason)))
Chris@63 195 #elif __GNUC__
Chris@63 196 #define KJ_DEPRECATED(reason) \
Chris@63 197 __attribute__((deprecated))
Chris@63 198 #define KJ_UNAVAILABLE(reason)
Chris@63 199 #else
Chris@63 200 #define KJ_DEPRECATED(reason)
Chris@63 201 #define KJ_UNAVAILABLE(reason)
Chris@63 202 // TODO(msvc): Again, here, MSVC prefers a prefix, __declspec(deprecated).
Chris@63 203 #endif
Chris@63 204
Chris@63 205 namespace _ { // private
Chris@63 206
Chris@63 207 KJ_NORETURN(void inlineRequireFailure(
Chris@63 208 const char* file, int line, const char* expectation, const char* macroArgs,
Chris@63 209 const char* message = nullptr));
Chris@63 210
Chris@63 211 KJ_NORETURN(void unreachable());
Chris@63 212
Chris@63 213 } // namespace _ (private)
Chris@63 214
Chris@63 215 #ifdef KJ_DEBUG
Chris@63 216 #if _MSC_VER
Chris@63 217 #define KJ_IREQUIRE(condition, ...) \
Chris@63 218 if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \
Chris@63 219 __FILE__, __LINE__, #condition, "" #__VA_ARGS__, __VA_ARGS__)
Chris@63 220 // Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users. Used to
Chris@63 221 // check preconditions inside inline methods. KJ_IREQUIRE is particularly useful in that
Chris@63 222 // it will be enabled depending on whether the application is compiled in debug mode rather than
Chris@63 223 // whether libkj is.
Chris@63 224 #else
Chris@63 225 #define KJ_IREQUIRE(condition, ...) \
Chris@63 226 if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \
Chris@63 227 __FILE__, __LINE__, #condition, #__VA_ARGS__, ##__VA_ARGS__)
Chris@63 228 // Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users. Used to
Chris@63 229 // check preconditions inside inline methods. KJ_IREQUIRE is particularly useful in that
Chris@63 230 // it will be enabled depending on whether the application is compiled in debug mode rather than
Chris@63 231 // whether libkj is.
Chris@63 232 #endif
Chris@63 233 #else
Chris@63 234 #define KJ_IREQUIRE(condition, ...)
Chris@63 235 #endif
Chris@63 236
Chris@63 237 #define KJ_IASSERT KJ_IREQUIRE
Chris@63 238
Chris@63 239 #define KJ_UNREACHABLE ::kj::_::unreachable();
Chris@63 240 // Put this on code paths that cannot be reached to suppress compiler warnings about missing
Chris@63 241 // returns.
Chris@63 242
Chris@63 243 #if __clang__
Chris@63 244 #define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT
Chris@63 245 #else
Chris@63 246 #define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT KJ_UNREACHABLE
Chris@63 247 #endif
Chris@63 248
Chris@63 249 // #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack)
Chris@63 250 //
Chris@63 251 // Allocate an array, preferably on the stack, unless it is too big. On GCC this will use
Chris@63 252 // variable-sized arrays. For other compilers we could just use a fixed-size array. `minStack`
Chris@63 253 // is the stack array size to use if variable-width arrays are not supported. `maxStack` is the
Chris@63 254 // maximum stack array size if variable-width arrays *are* supported.
Chris@63 255 #if __GNUC__ && !__clang__
Chris@63 256 #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
Chris@63 257 size_t name##_size = (size); \
Chris@63 258 bool name##_isOnStack = name##_size <= (maxStack); \
Chris@63 259 type name##_stack[name##_isOnStack ? size : 0]; \
Chris@63 260 ::kj::Array<type> name##_heap = name##_isOnStack ? \
Chris@63 261 nullptr : kj::heapArray<type>(name##_size); \
Chris@63 262 ::kj::ArrayPtr<type> name = name##_isOnStack ? \
Chris@63 263 kj::arrayPtr(name##_stack, name##_size) : name##_heap
Chris@63 264 #else
Chris@63 265 #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
Chris@63 266 size_t name##_size = (size); \
Chris@63 267 bool name##_isOnStack = name##_size <= (minStack); \
Chris@63 268 type name##_stack[minStack]; \
Chris@63 269 ::kj::Array<type> name##_heap = name##_isOnStack ? \
Chris@63 270 nullptr : kj::heapArray<type>(name##_size); \
Chris@63 271 ::kj::ArrayPtr<type> name = name##_isOnStack ? \
Chris@63 272 kj::arrayPtr(name##_stack, name##_size) : name##_heap
Chris@63 273 #endif
Chris@63 274
Chris@63 275 #define KJ_CONCAT_(x, y) x##y
Chris@63 276 #define KJ_CONCAT(x, y) KJ_CONCAT_(x, y)
Chris@63 277 #define KJ_UNIQUE_NAME(prefix) KJ_CONCAT(prefix, __LINE__)
Chris@63 278 // Create a unique identifier name. We use concatenate __LINE__ rather than __COUNTER__ so that
Chris@63 279 // the name can be used multiple times in the same macro.
Chris@63 280
Chris@63 281 #if _MSC_VER
Chris@63 282
Chris@63 283 #define KJ_CONSTEXPR(...) __VA_ARGS__
Chris@63 284 // Use in cases where MSVC barfs on constexpr. A replacement keyword (e.g. "const") can be
Chris@63 285 // provided, or just leave blank to remove the keyword entirely.
Chris@63 286 //
Chris@63 287 // TODO(msvc): Remove this hack once MSVC fully supports constexpr.
Chris@63 288
Chris@63 289 #ifndef __restrict__
Chris@63 290 #define __restrict__ __restrict
Chris@63 291 // TODO(msvc): Would it be better to define a KJ_RESTRICT macro?
Chris@63 292 #endif
Chris@63 293
Chris@63 294 #pragma warning(disable: 4521 4522)
Chris@63 295 // This warning complains when there are two copy constructors, one for a const reference and
Chris@63 296 // one for a non-const reference. It is often quite necessary to do this in wrapper templates,
Chris@63 297 // therefore this warning is dumb and we disable it.
Chris@63 298
Chris@63 299 #pragma warning(disable: 4458)
Chris@63 300 // Warns when a parameter name shadows a class member. Unfortunately my code does this a lot,
Chris@63 301 // since I don't use a special name format for members.
Chris@63 302
Chris@63 303 #else // _MSC_VER
Chris@63 304 #define KJ_CONSTEXPR(...) constexpr
Chris@63 305 #endif
Chris@63 306
Chris@63 307 // =======================================================================================
Chris@63 308 // Template metaprogramming helpers.
Chris@63 309
Chris@63 310 template <typename T> struct NoInfer_ { typedef T Type; };
Chris@63 311 template <typename T> using NoInfer = typename NoInfer_<T>::Type;
Chris@63 312 // Use NoInfer<T>::Type in place of T for a template function parameter to prevent inference of
Chris@63 313 // the type based on the parameter value.
Chris@63 314
Chris@63 315 template <typename T> struct RemoveConst_ { typedef T Type; };
Chris@63 316 template <typename T> struct RemoveConst_<const T> { typedef T Type; };
Chris@63 317 template <typename T> using RemoveConst = typename RemoveConst_<T>::Type;
Chris@63 318
Chris@63 319 template <typename> struct IsLvalueReference_ { static constexpr bool value = false; };
Chris@63 320 template <typename T> struct IsLvalueReference_<T&> { static constexpr bool value = true; };
Chris@63 321 template <typename T>
Chris@63 322 inline constexpr bool isLvalueReference() { return IsLvalueReference_<T>::value; }
Chris@63 323
Chris@63 324 template <typename T> struct Decay_ { typedef T Type; };
Chris@63 325 template <typename T> struct Decay_<T&> { typedef typename Decay_<T>::Type Type; };
Chris@63 326 template <typename T> struct Decay_<T&&> { typedef typename Decay_<T>::Type Type; };
Chris@63 327 template <typename T> struct Decay_<T[]> { typedef typename Decay_<T*>::Type Type; };
Chris@63 328 template <typename T> struct Decay_<const T[]> { typedef typename Decay_<const T*>::Type Type; };
Chris@63 329 template <typename T, size_t s> struct Decay_<T[s]> { typedef typename Decay_<T*>::Type Type; };
Chris@63 330 template <typename T, size_t s> struct Decay_<const T[s]> { typedef typename Decay_<const T*>::Type Type; };
Chris@63 331 template <typename T> struct Decay_<const T> { typedef typename Decay_<T>::Type Type; };
Chris@63 332 template <typename T> struct Decay_<volatile T> { typedef typename Decay_<T>::Type Type; };
Chris@63 333 template <typename T> using Decay = typename Decay_<T>::Type;
Chris@63 334
Chris@63 335 template <bool b> struct EnableIf_;
Chris@63 336 template <> struct EnableIf_<true> { typedef void Type; };
Chris@63 337 template <bool b> using EnableIf = typename EnableIf_<b>::Type;
Chris@63 338 // Use like:
Chris@63 339 //
Chris@63 340 // template <typename T, typename = EnableIf<isValid<T>()>
Chris@63 341 // void func(T&& t);
Chris@63 342
Chris@63 343 template <typename...> struct VoidSfinae_ { using Type = void; };
Chris@63 344 template <typename... Ts> using VoidSfinae = typename VoidSfinae_<Ts...>::Type;
Chris@63 345 // Note: VoidSfinae is std::void_t from C++17.
Chris@63 346
Chris@63 347 template <typename T>
Chris@63 348 T instance() noexcept;
Chris@63 349 // Like std::declval, but doesn't transform T into an rvalue reference. If you want that, specify
Chris@63 350 // instance<T&&>().
Chris@63 351
Chris@63 352 struct DisallowConstCopy {
Chris@63 353 // Inherit from this, or declare a member variable of this type, to prevent the class from being
Chris@63 354 // copyable from a const reference -- instead, it will only be copyable from non-const references.
Chris@63 355 // This is useful for enforcing transitive constness of contained pointers.
Chris@63 356 //
Chris@63 357 // For example, say you have a type T which contains a pointer. T has non-const methods which
Chris@63 358 // modify the value at that pointer, but T's const methods are designed to allow reading only.
Chris@63 359 // Unfortunately, if T has a regular copy constructor, someone can simply make a copy of T and
Chris@63 360 // then use it to modify the pointed-to value. However, if T inherits DisallowConstCopy, then
Chris@63 361 // callers will only be able to copy non-const instances of T. Ideally, there is some
Chris@63 362 // parallel type ImmutableT which is like a version of T that only has const methods, and can
Chris@63 363 // be copied from a const T.
Chris@63 364 //
Chris@63 365 // Note that due to C++ rules about implicit copy constructors and assignment operators, any
Chris@63 366 // type that contains or inherits from a type that disallows const copies will also automatically
Chris@63 367 // disallow const copies. Hey, cool, that's exactly what we want.
Chris@63 368
Chris@63 369 #if CAPNP_DEBUG_TYPES
Chris@63 370 // Alas! Declaring a defaulted non-const copy constructor tickles a bug which causes GCC and
Chris@63 371 // Clang to disagree on ABI, using different calling conventions to pass this type, leading to
Chris@63 372 // immediate segfaults. See:
Chris@63 373 // https://bugs.llvm.org/show_bug.cgi?id=23764
Chris@63 374 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58074
Chris@63 375 //
Chris@63 376 // Because of this, we can't use this technique. We guard it by CAPNP_DEBUG_TYPES so that it
Chris@63 377 // still applies to the Cap'n Proto developers during internal testing.
Chris@63 378
Chris@63 379 DisallowConstCopy() = default;
Chris@63 380 DisallowConstCopy(DisallowConstCopy&) = default;
Chris@63 381 DisallowConstCopy(DisallowConstCopy&&) = default;
Chris@63 382 DisallowConstCopy& operator=(DisallowConstCopy&) = default;
Chris@63 383 DisallowConstCopy& operator=(DisallowConstCopy&&) = default;
Chris@63 384 #endif
Chris@63 385 };
Chris@63 386
Chris@63 387 #if _MSC_VER
Chris@63 388
Chris@63 389 #define KJ_CPCAP(obj) obj=::kj::cp(obj)
Chris@63 390 // TODO(msvc): MSVC refuses to invoke non-const versions of copy constructors in by-value lambda
Chris@63 391 // captures. Wrap your captured object in this macro to force the compiler to perform a copy.
Chris@63 392 // Example:
Chris@63 393 //
Chris@63 394 // struct Foo: DisallowConstCopy {};
Chris@63 395 // Foo foo;
Chris@63 396 // auto lambda = [KJ_CPCAP(foo)] {};
Chris@63 397
Chris@63 398 #else
Chris@63 399
Chris@63 400 #define KJ_CPCAP(obj) obj
Chris@63 401 // Clang and gcc both already perform copy capturing correctly with non-const copy constructors.
Chris@63 402
Chris@63 403 #endif
Chris@63 404
Chris@63 405 template <typename T>
Chris@63 406 struct DisallowConstCopyIfNotConst: public DisallowConstCopy {
Chris@63 407 // Inherit from this when implementing a template that contains a pointer to T and which should
Chris@63 408 // enforce transitive constness. If T is a const type, this has no effect. Otherwise, it is
Chris@63 409 // an alias for DisallowConstCopy.
Chris@63 410 };
Chris@63 411
Chris@63 412 template <typename T>
Chris@63 413 struct DisallowConstCopyIfNotConst<const T> {};
Chris@63 414
Chris@63 415 template <typename T> struct IsConst_ { static constexpr bool value = false; };
Chris@63 416 template <typename T> struct IsConst_<const T> { static constexpr bool value = true; };
Chris@63 417 template <typename T> constexpr bool isConst() { return IsConst_<T>::value; }
Chris@63 418
Chris@63 419 template <typename T> struct EnableIfNotConst_ { typedef T Type; };
Chris@63 420 template <typename T> struct EnableIfNotConst_<const T>;
Chris@63 421 template <typename T> using EnableIfNotConst = typename EnableIfNotConst_<T>::Type;
Chris@63 422
Chris@63 423 template <typename T> struct EnableIfConst_;
Chris@63 424 template <typename T> struct EnableIfConst_<const T> { typedef T Type; };
Chris@63 425 template <typename T> using EnableIfConst = typename EnableIfConst_<T>::Type;
Chris@63 426
Chris@63 427 template <typename T> struct RemoveConstOrDisable_ { struct Type; };
Chris@63 428 template <typename T> struct RemoveConstOrDisable_<const T> { typedef T Type; };
Chris@63 429 template <typename T> using RemoveConstOrDisable = typename RemoveConstOrDisable_<T>::Type;
Chris@63 430
Chris@63 431 template <typename T> struct IsReference_ { static constexpr bool value = false; };
Chris@63 432 template <typename T> struct IsReference_<T&> { static constexpr bool value = true; };
Chris@63 433 template <typename T> constexpr bool isReference() { return IsReference_<T>::value; }
Chris@63 434
Chris@63 435 template <typename From, typename To>
Chris@63 436 struct PropagateConst_ { typedef To Type; };
Chris@63 437 template <typename From, typename To>
Chris@63 438 struct PropagateConst_<const From, To> { typedef const To Type; };
Chris@63 439 template <typename From, typename To>
Chris@63 440 using PropagateConst = typename PropagateConst_<From, To>::Type;
Chris@63 441
Chris@63 442 namespace _ { // private
Chris@63 443
Chris@63 444 template <typename T>
Chris@63 445 T refIfLvalue(T&&);
Chris@63 446
Chris@63 447 } // namespace _ (private)
Chris@63 448
Chris@63 449 #define KJ_DECLTYPE_REF(exp) decltype(::kj::_::refIfLvalue(exp))
Chris@63 450 // Like decltype(exp), but if exp is an lvalue, produces a reference type.
Chris@63 451 //
Chris@63 452 // int i;
Chris@63 453 // decltype(i) i1(i); // i1 has type int.
Chris@63 454 // KJ_DECLTYPE_REF(i + 1) i2(i + 1); // i2 has type int.
Chris@63 455 // KJ_DECLTYPE_REF(i) i3(i); // i3 has type int&.
Chris@63 456 // KJ_DECLTYPE_REF(kj::mv(i)) i4(kj::mv(i)); // i4 has type int.
Chris@63 457
Chris@63 458 template <typename T>
Chris@63 459 struct CanConvert_ {
Chris@63 460 static int sfinae(T);
Chris@63 461 static bool sfinae(...);
Chris@63 462 };
Chris@63 463
Chris@63 464 template <typename T, typename U>
Chris@63 465 constexpr bool canConvert() {
Chris@63 466 return sizeof(CanConvert_<U>::sfinae(instance<T>())) == sizeof(int);
Chris@63 467 }
Chris@63 468
Chris@63 469 #if __GNUC__ && !__clang__ && __GNUC__ < 5
Chris@63 470 template <typename T>
Chris@63 471 constexpr bool canMemcpy() {
Chris@63 472 // Returns true if T can be copied using memcpy instead of using the copy constructor or
Chris@63 473 // assignment operator.
Chris@63 474
Chris@63 475 // GCC 4 does not have __is_trivially_constructible and friends, and there doesn't seem to be
Chris@63 476 // any reliable alternative. __has_trivial_copy() and __has_trivial_assign() return the right
Chris@63 477 // thing at one point but later on they changed such that a deleted copy constructor was
Chris@63 478 // considered "trivial" (apparently technically correct, though useless). So, on GCC 4 we give up
Chris@63 479 // and assume we can't memcpy() at all, and must explicitly copy-construct everything.
Chris@63 480 return false;
Chris@63 481 }
Chris@63 482 #define KJ_ASSERT_CAN_MEMCPY(T)
Chris@63 483 #else
Chris@63 484 template <typename T>
Chris@63 485 constexpr bool canMemcpy() {
Chris@63 486 // Returns true if T can be copied using memcpy instead of using the copy constructor or
Chris@63 487 // assignment operator.
Chris@63 488
Chris@63 489 return __is_trivially_constructible(T, const T&) && __is_trivially_assignable(T, const T&);
Chris@63 490 }
Chris@63 491 #define KJ_ASSERT_CAN_MEMCPY(T) \
Chris@63 492 static_assert(kj::canMemcpy<T>(), "this code expects this type to be memcpy()-able");
Chris@63 493 #endif
Chris@63 494
Chris@63 495 // =======================================================================================
Chris@63 496 // Equivalents to std::move() and std::forward(), since these are very commonly needed and the
Chris@63 497 // std header <utility> pulls in lots of other stuff.
Chris@63 498 //
Chris@63 499 // We use abbreviated names mv and fwd because these helpers (especially mv) are so commonly used
Chris@63 500 // that the cost of typing more letters outweighs the cost of being slightly harder to understand
Chris@63 501 // when first encountered.
Chris@63 502
Chris@63 503 template<typename T> constexpr T&& mv(T& t) noexcept { return static_cast<T&&>(t); }
Chris@63 504 template<typename T> constexpr T&& fwd(NoInfer<T>& t) noexcept { return static_cast<T&&>(t); }
Chris@63 505
Chris@63 506 template<typename T> constexpr T cp(T& t) noexcept { return t; }
Chris@63 507 template<typename T> constexpr T cp(const T& t) noexcept { return t; }
Chris@63 508 // Useful to force a copy, particularly to pass into a function that expects T&&.
Chris@63 509
Chris@63 510 template <typename T, typename U, bool takeT, bool uOK = true> struct ChooseType_;
Chris@63 511 template <typename T, typename U> struct ChooseType_<T, U, true, true> { typedef T Type; };
Chris@63 512 template <typename T, typename U> struct ChooseType_<T, U, true, false> { typedef T Type; };
Chris@63 513 template <typename T, typename U> struct ChooseType_<T, U, false, true> { typedef U Type; };
Chris@63 514
Chris@63 515 template <typename T, typename U>
Chris@63 516 using WiderType = typename ChooseType_<T, U, sizeof(T) >= sizeof(U)>::Type;
Chris@63 517
Chris@63 518 template <typename T, typename U>
Chris@63 519 inline constexpr auto min(T&& a, U&& b) -> WiderType<Decay<T>, Decay<U>> {
Chris@63 520 return a < b ? WiderType<Decay<T>, Decay<U>>(a) : WiderType<Decay<T>, Decay<U>>(b);
Chris@63 521 }
Chris@63 522
Chris@63 523 template <typename T, typename U>
Chris@63 524 inline constexpr auto max(T&& a, U&& b) -> WiderType<Decay<T>, Decay<U>> {
Chris@63 525 return a > b ? WiderType<Decay<T>, Decay<U>>(a) : WiderType<Decay<T>, Decay<U>>(b);
Chris@63 526 }
Chris@63 527
Chris@63 528 template <typename T, size_t s>
Chris@63 529 inline constexpr size_t size(T (&arr)[s]) { return s; }
Chris@63 530 template <typename T>
Chris@63 531 inline constexpr size_t size(T&& arr) { return arr.size(); }
Chris@63 532 // Returns the size of the parameter, whether the parameter is a regular C array or a container
Chris@63 533 // with a `.size()` method.
Chris@63 534
Chris@63 535 class MaxValue_ {
Chris@63 536 private:
Chris@63 537 template <typename T>
Chris@63 538 inline constexpr T maxSigned() const {
Chris@63 539 return (1ull << (sizeof(T) * 8 - 1)) - 1;
Chris@63 540 }
Chris@63 541 template <typename T>
Chris@63 542 inline constexpr T maxUnsigned() const {
Chris@63 543 return ~static_cast<T>(0u);
Chris@63 544 }
Chris@63 545
Chris@63 546 public:
Chris@63 547 #define _kJ_HANDLE_TYPE(T) \
Chris@63 548 inline constexpr operator signed T() const { return MaxValue_::maxSigned < signed T>(); } \
Chris@63 549 inline constexpr operator unsigned T() const { return MaxValue_::maxUnsigned<unsigned T>(); }
Chris@63 550 _kJ_HANDLE_TYPE(char)
Chris@63 551 _kJ_HANDLE_TYPE(short)
Chris@63 552 _kJ_HANDLE_TYPE(int)
Chris@63 553 _kJ_HANDLE_TYPE(long)
Chris@63 554 _kJ_HANDLE_TYPE(long long)
Chris@63 555 #undef _kJ_HANDLE_TYPE
Chris@63 556
Chris@63 557 inline constexpr operator char() const {
Chris@63 558 // `char` is different from both `signed char` and `unsigned char`, and may be signed or
Chris@63 559 // unsigned on different platforms. Ugh.
Chris@63 560 return char(-1) < 0 ? MaxValue_::maxSigned<char>()
Chris@63 561 : MaxValue_::maxUnsigned<char>();
Chris@63 562 }
Chris@63 563 };
Chris@63 564
Chris@63 565 class MinValue_ {
Chris@63 566 private:
Chris@63 567 template <typename T>
Chris@63 568 inline constexpr T minSigned() const {
Chris@63 569 return 1ull << (sizeof(T) * 8 - 1);
Chris@63 570 }
Chris@63 571 template <typename T>
Chris@63 572 inline constexpr T minUnsigned() const {
Chris@63 573 return 0u;
Chris@63 574 }
Chris@63 575
Chris@63 576 public:
Chris@63 577 #define _kJ_HANDLE_TYPE(T) \
Chris@63 578 inline constexpr operator signed T() const { return MinValue_::minSigned < signed T>(); } \
Chris@63 579 inline constexpr operator unsigned T() const { return MinValue_::minUnsigned<unsigned T>(); }
Chris@63 580 _kJ_HANDLE_TYPE(char)
Chris@63 581 _kJ_HANDLE_TYPE(short)
Chris@63 582 _kJ_HANDLE_TYPE(int)
Chris@63 583 _kJ_HANDLE_TYPE(long)
Chris@63 584 _kJ_HANDLE_TYPE(long long)
Chris@63 585 #undef _kJ_HANDLE_TYPE
Chris@63 586
Chris@63 587 inline constexpr operator char() const {
Chris@63 588 // `char` is different from both `signed char` and `unsigned char`, and may be signed or
Chris@63 589 // unsigned on different platforms. Ugh.
Chris@63 590 return char(-1) < 0 ? MinValue_::minSigned<char>()
Chris@63 591 : MinValue_::minUnsigned<char>();
Chris@63 592 }
Chris@63 593 };
Chris@63 594
Chris@63 595 static KJ_CONSTEXPR(const) MaxValue_ maxValue = MaxValue_();
Chris@63 596 // A special constant which, when cast to an integer type, takes on the maximum possible value of
Chris@63 597 // that type. This is useful to use as e.g. a parameter to a function because it will be robust
Chris@63 598 // in the face of changes to the parameter's type.
Chris@63 599 //
Chris@63 600 // `char` is not supported, but `signed char` and `unsigned char` are.
Chris@63 601
Chris@63 602 static KJ_CONSTEXPR(const) MinValue_ minValue = MinValue_();
Chris@63 603 // A special constant which, when cast to an integer type, takes on the minimum possible value
Chris@63 604 // of that type. This is useful to use as e.g. a parameter to a function because it will be robust
Chris@63 605 // in the face of changes to the parameter's type.
Chris@63 606 //
Chris@63 607 // `char` is not supported, but `signed char` and `unsigned char` are.
Chris@63 608
Chris@63 609 template <typename T>
Chris@63 610 inline bool operator==(T t, MaxValue_) { return t == Decay<T>(maxValue); }
Chris@63 611 template <typename T>
Chris@63 612 inline bool operator==(T t, MinValue_) { return t == Decay<T>(minValue); }
Chris@63 613
Chris@63 614 template <uint bits>
Chris@63 615 inline constexpr unsigned long long maxValueForBits() {
Chris@63 616 // Get the maximum integer representable in the given number of bits.
Chris@63 617
Chris@63 618 // 1ull << 64 is unfortunately undefined.
Chris@63 619 return (bits == 64 ? 0 : (1ull << bits)) - 1;
Chris@63 620 }
Chris@63 621
Chris@63 622 struct ThrowOverflow {
Chris@63 623 // Functor which throws an exception complaining about integer overflow. Usually this is used
Chris@63 624 // with the interfaces in units.h, but is defined here because Cap'n Proto wants to avoid
Chris@63 625 // including units.h when not using CAPNP_DEBUG_TYPES.
Chris@63 626 void operator()() const;
Chris@63 627 };
Chris@63 628
Chris@63 629 #if __GNUC__
Chris@63 630 inline constexpr float inf() { return __builtin_huge_valf(); }
Chris@63 631 inline constexpr float nan() { return __builtin_nanf(""); }
Chris@63 632
Chris@63 633 #elif _MSC_VER
Chris@63 634
Chris@63 635 // Do what MSVC math.h does
Chris@63 636 #pragma warning(push)
Chris@63 637 #pragma warning(disable: 4756) // "overflow in constant arithmetic"
Chris@63 638 inline constexpr float inf() { return (float)(1e300 * 1e300); }
Chris@63 639 #pragma warning(pop)
Chris@63 640
Chris@63 641 float nan();
Chris@63 642 // Unfortunatley, inf() * 0.0f produces a NaN with the sign bit set, whereas our preferred
Chris@63 643 // canonical NaN should not have the sign bit set. std::numeric_limits<float>::quiet_NaN()
Chris@63 644 // returns the correct NaN, but we don't want to #include that here. So, we give up and make
Chris@63 645 // this out-of-line on MSVC.
Chris@63 646 //
Chris@63 647 // TODO(msvc): Can we do better?
Chris@63 648
Chris@63 649 #else
Chris@63 650 #error "Not sure how to support your compiler."
Chris@63 651 #endif
Chris@63 652
Chris@63 653 inline constexpr bool isNaN(float f) { return f != f; }
Chris@63 654 inline constexpr bool isNaN(double f) { return f != f; }
Chris@63 655
Chris@63 656 inline int popCount(unsigned int x) {
Chris@63 657 #if defined(_MSC_VER)
Chris@63 658 return __popcnt(x);
Chris@63 659 // Note: __popcnt returns unsigned int, but the value is clearly guaranteed to fit into an int
Chris@63 660 #else
Chris@63 661 return __builtin_popcount(x);
Chris@63 662 #endif
Chris@63 663 }
Chris@63 664
Chris@63 665 // =======================================================================================
Chris@63 666 // Useful fake containers
Chris@63 667
Chris@63 668 template <typename T>
Chris@63 669 class Range {
Chris@63 670 public:
Chris@63 671 inline constexpr Range(const T& begin, const T& end): begin_(begin), end_(end) {}
Chris@63 672 inline explicit constexpr Range(const T& end): begin_(0), end_(end) {}
Chris@63 673
Chris@63 674 class Iterator {
Chris@63 675 public:
Chris@63 676 Iterator() = default;
Chris@63 677 inline Iterator(const T& value): value(value) {}
Chris@63 678
Chris@63 679 inline const T& operator* () const { return value; }
Chris@63 680 inline const T& operator[](size_t index) const { return value + index; }
Chris@63 681 inline Iterator& operator++() { ++value; return *this; }
Chris@63 682 inline Iterator operator++(int) { return Iterator(value++); }
Chris@63 683 inline Iterator& operator--() { --value; return *this; }
Chris@63 684 inline Iterator operator--(int) { return Iterator(value--); }
Chris@63 685 inline Iterator& operator+=(ptrdiff_t amount) { value += amount; return *this; }
Chris@63 686 inline Iterator& operator-=(ptrdiff_t amount) { value -= amount; return *this; }
Chris@63 687 inline Iterator operator+ (ptrdiff_t amount) const { return Iterator(value + amount); }
Chris@63 688 inline Iterator operator- (ptrdiff_t amount) const { return Iterator(value - amount); }
Chris@63 689 inline ptrdiff_t operator- (const Iterator& other) const { return value - other.value; }
Chris@63 690
Chris@63 691 inline bool operator==(const Iterator& other) const { return value == other.value; }
Chris@63 692 inline bool operator!=(const Iterator& other) const { return value != other.value; }
Chris@63 693 inline bool operator<=(const Iterator& other) const { return value <= other.value; }
Chris@63 694 inline bool operator>=(const Iterator& other) const { return value >= other.value; }
Chris@63 695 inline bool operator< (const Iterator& other) const { return value < other.value; }
Chris@63 696 inline bool operator> (const Iterator& other) const { return value > other.value; }
Chris@63 697
Chris@63 698 private:
Chris@63 699 T value;
Chris@63 700 };
Chris@63 701
Chris@63 702 inline Iterator begin() const { return Iterator(begin_); }
Chris@63 703 inline Iterator end() const { return Iterator(end_); }
Chris@63 704
Chris@63 705 inline auto size() const -> decltype(instance<T>() - instance<T>()) { return end_ - begin_; }
Chris@63 706
Chris@63 707 private:
Chris@63 708 T begin_;
Chris@63 709 T end_;
Chris@63 710 };
Chris@63 711
Chris@63 712 template <typename T, typename U>
Chris@63 713 inline constexpr Range<WiderType<Decay<T>, Decay<U>>> range(T begin, U end) {
Chris@63 714 return Range<WiderType<Decay<T>, Decay<U>>>(begin, end);
Chris@63 715 }
Chris@63 716
Chris@63 717 template <typename T>
Chris@63 718 inline constexpr Range<Decay<T>> range(T begin, T end) { return Range<Decay<T>>(begin, end); }
Chris@63 719 // Returns a fake iterable container containing all values of T from `begin` (inclusive) to `end`
Chris@63 720 // (exclusive). Example:
Chris@63 721 //
Chris@63 722 // // Prints 1, 2, 3, 4, 5, 6, 7, 8, 9.
Chris@63 723 // for (int i: kj::range(1, 10)) { print(i); }
Chris@63 724
Chris@63 725 template <typename T>
Chris@63 726 inline constexpr Range<Decay<T>> zeroTo(T end) { return Range<Decay<T>>(end); }
Chris@63 727 // Returns a fake iterable container containing all values of T from zero (inclusive) to `end`
Chris@63 728 // (exclusive). Example:
Chris@63 729 //
Chris@63 730 // // Prints 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Chris@63 731 // for (int i: kj::zeroTo(10)) { print(i); }
Chris@63 732
Chris@63 733 template <typename T>
Chris@63 734 inline constexpr Range<size_t> indices(T&& container) {
Chris@63 735 // Shortcut for iterating over the indices of a container:
Chris@63 736 //
Chris@63 737 // for (size_t i: kj::indices(myArray)) { handle(myArray[i]); }
Chris@63 738
Chris@63 739 return range<size_t>(0, kj::size(container));
Chris@63 740 }
Chris@63 741
Chris@63 742 template <typename T>
Chris@63 743 class Repeat {
Chris@63 744 public:
Chris@63 745 inline constexpr Repeat(const T& value, size_t count): value(value), count(count) {}
Chris@63 746
Chris@63 747 class Iterator {
Chris@63 748 public:
Chris@63 749 Iterator() = default;
Chris@63 750 inline Iterator(const T& value, size_t index): value(value), index(index) {}
Chris@63 751
Chris@63 752 inline const T& operator* () const { return value; }
Chris@63 753 inline const T& operator[](ptrdiff_t index) const { return value; }
Chris@63 754 inline Iterator& operator++() { ++index; return *this; }
Chris@63 755 inline Iterator operator++(int) { return Iterator(value, index++); }
Chris@63 756 inline Iterator& operator--() { --index; return *this; }
Chris@63 757 inline Iterator operator--(int) { return Iterator(value, index--); }
Chris@63 758 inline Iterator& operator+=(ptrdiff_t amount) { index += amount; return *this; }
Chris@63 759 inline Iterator& operator-=(ptrdiff_t amount) { index -= amount; return *this; }
Chris@63 760 inline Iterator operator+ (ptrdiff_t amount) const { return Iterator(value, index + amount); }
Chris@63 761 inline Iterator operator- (ptrdiff_t amount) const { return Iterator(value, index - amount); }
Chris@63 762 inline ptrdiff_t operator- (const Iterator& other) const { return index - other.index; }
Chris@63 763
Chris@63 764 inline bool operator==(const Iterator& other) const { return index == other.index; }
Chris@63 765 inline bool operator!=(const Iterator& other) const { return index != other.index; }
Chris@63 766 inline bool operator<=(const Iterator& other) const { return index <= other.index; }
Chris@63 767 inline bool operator>=(const Iterator& other) const { return index >= other.index; }
Chris@63 768 inline bool operator< (const Iterator& other) const { return index < other.index; }
Chris@63 769 inline bool operator> (const Iterator& other) const { return index > other.index; }
Chris@63 770
Chris@63 771 private:
Chris@63 772 T value;
Chris@63 773 size_t index;
Chris@63 774 };
Chris@63 775
Chris@63 776 inline Iterator begin() const { return Iterator(value, 0); }
Chris@63 777 inline Iterator end() const { return Iterator(value, count); }
Chris@63 778
Chris@63 779 inline size_t size() const { return count; }
Chris@63 780 inline const T& operator[](ptrdiff_t) const { return value; }
Chris@63 781
Chris@63 782 private:
Chris@63 783 T value;
Chris@63 784 size_t count;
Chris@63 785 };
Chris@63 786
Chris@63 787 template <typename T>
Chris@63 788 inline constexpr Repeat<Decay<T>> repeat(T&& value, size_t count) {
Chris@63 789 // Returns a fake iterable which contains `count` repeats of `value`. Useful for e.g. creating
Chris@63 790 // a bunch of spaces: `kj::repeat(' ', indent * 2)`
Chris@63 791
Chris@63 792 return Repeat<Decay<T>>(value, count);
Chris@63 793 }
Chris@63 794
Chris@63 795 // =======================================================================================
Chris@63 796 // Manually invoking constructors and destructors
Chris@63 797 //
Chris@63 798 // ctor(x, ...) and dtor(x) invoke x's constructor or destructor, respectively.
Chris@63 799
Chris@63 800 // We want placement new, but we don't want to #include <new>. operator new cannot be defined in
Chris@63 801 // a namespace, and defining it globally conflicts with the definition in <new>. So we have to
Chris@63 802 // define a dummy type and an operator new that uses it.
Chris@63 803
Chris@63 804 namespace _ { // private
Chris@63 805 struct PlacementNew {};
Chris@63 806 } // namespace _ (private)
Chris@63 807 } // namespace kj
Chris@63 808
Chris@63 809 inline void* operator new(size_t, kj::_::PlacementNew, void* __p) noexcept {
Chris@63 810 return __p;
Chris@63 811 }
Chris@63 812
Chris@63 813 inline void operator delete(void*, kj::_::PlacementNew, void* __p) noexcept {}
Chris@63 814
Chris@63 815 namespace kj {
Chris@63 816
Chris@63 817 template <typename T, typename... Params>
Chris@63 818 inline void ctor(T& location, Params&&... params) {
Chris@63 819 new (_::PlacementNew(), &location) T(kj::fwd<Params>(params)...);
Chris@63 820 }
Chris@63 821
Chris@63 822 template <typename T>
Chris@63 823 inline void dtor(T& location) {
Chris@63 824 location.~T();
Chris@63 825 }
Chris@63 826
Chris@63 827 // =======================================================================================
Chris@63 828 // Maybe
Chris@63 829 //
Chris@63 830 // Use in cases where you want to indicate that a value may be null. Using Maybe<T&> instead of T*
Chris@63 831 // forces the caller to handle the null case in order to satisfy the compiler, thus reliably
Chris@63 832 // preventing null pointer dereferences at runtime.
Chris@63 833 //
Chris@63 834 // Maybe<T> can be implicitly constructed from T and from nullptr. Additionally, it can be
Chris@63 835 // implicitly constructed from T*, in which case the pointer is checked for nullness at runtime.
Chris@63 836 // To read the value of a Maybe<T>, do:
Chris@63 837 //
Chris@63 838 // KJ_IF_MAYBE(value, someFuncReturningMaybe()) {
Chris@63 839 // doSomething(*value);
Chris@63 840 // } else {
Chris@63 841 // maybeWasNull();
Chris@63 842 // }
Chris@63 843 //
Chris@63 844 // KJ_IF_MAYBE's first parameter is a variable name which will be defined within the following
Chris@63 845 // block. The variable will behave like a (guaranteed non-null) pointer to the Maybe's value,
Chris@63 846 // though it may or may not actually be a pointer.
Chris@63 847 //
Chris@63 848 // Note that Maybe<T&> actually just wraps a pointer, whereas Maybe<T> wraps a T and a boolean
Chris@63 849 // indicating nullness.
Chris@63 850
Chris@63 851 template <typename T>
Chris@63 852 class Maybe;
Chris@63 853
Chris@63 854 namespace _ { // private
Chris@63 855
Chris@63 856 template <typename T>
Chris@63 857 class NullableValue {
Chris@63 858 // Class whose interface behaves much like T*, but actually contains an instance of T and a
Chris@63 859 // boolean flag indicating nullness.
Chris@63 860
Chris@63 861 public:
Chris@63 862 inline NullableValue(NullableValue&& other) noexcept(noexcept(T(instance<T&&>())))
Chris@63 863 : isSet(other.isSet) {
Chris@63 864 if (isSet) {
Chris@63 865 ctor(value, kj::mv(other.value));
Chris@63 866 }
Chris@63 867 }
Chris@63 868 inline NullableValue(const NullableValue& other)
Chris@63 869 : isSet(other.isSet) {
Chris@63 870 if (isSet) {
Chris@63 871 ctor(value, other.value);
Chris@63 872 }
Chris@63 873 }
Chris@63 874 inline NullableValue(NullableValue& other)
Chris@63 875 : isSet(other.isSet) {
Chris@63 876 if (isSet) {
Chris@63 877 ctor(value, other.value);
Chris@63 878 }
Chris@63 879 }
Chris@63 880 inline ~NullableValue()
Chris@63 881 #if _MSC_VER
Chris@63 882 // TODO(msvc): MSVC has a hard time with noexcept specifier expressions that are more complex
Chris@63 883 // than `true` or `false`. We had a workaround for VS2015, but VS2017 regressed.
Chris@63 884 noexcept(false)
Chris@63 885 #else
Chris@63 886 noexcept(noexcept(instance<T&>().~T()))
Chris@63 887 #endif
Chris@63 888 {
Chris@63 889 if (isSet) {
Chris@63 890 dtor(value);
Chris@63 891 }
Chris@63 892 }
Chris@63 893
Chris@63 894 inline T& operator*() & { return value; }
Chris@63 895 inline const T& operator*() const & { return value; }
Chris@63 896 inline T&& operator*() && { return kj::mv(value); }
Chris@63 897 inline const T&& operator*() const && { return kj::mv(value); }
Chris@63 898 inline T* operator->() { return &value; }
Chris@63 899 inline const T* operator->() const { return &value; }
Chris@63 900 inline operator T*() { return isSet ? &value : nullptr; }
Chris@63 901 inline operator const T*() const { return isSet ? &value : nullptr; }
Chris@63 902
Chris@63 903 template <typename... Params>
Chris@63 904 inline T& emplace(Params&&... params) {
Chris@63 905 if (isSet) {
Chris@63 906 isSet = false;
Chris@63 907 dtor(value);
Chris@63 908 }
Chris@63 909 ctor(value, kj::fwd<Params>(params)...);
Chris@63 910 isSet = true;
Chris@63 911 return value;
Chris@63 912 }
Chris@63 913
Chris@63 914 private: // internal interface used by friends only
Chris@63 915 inline NullableValue() noexcept: isSet(false) {}
Chris@63 916 inline NullableValue(T&& t) noexcept(noexcept(T(instance<T&&>())))
Chris@63 917 : isSet(true) {
Chris@63 918 ctor(value, kj::mv(t));
Chris@63 919 }
Chris@63 920 inline NullableValue(T& t)
Chris@63 921 : isSet(true) {
Chris@63 922 ctor(value, t);
Chris@63 923 }
Chris@63 924 inline NullableValue(const T& t)
Chris@63 925 : isSet(true) {
Chris@63 926 ctor(value, t);
Chris@63 927 }
Chris@63 928 inline NullableValue(const T* t)
Chris@63 929 : isSet(t != nullptr) {
Chris@63 930 if (isSet) ctor(value, *t);
Chris@63 931 }
Chris@63 932 template <typename U>
Chris@63 933 inline NullableValue(NullableValue<U>&& other) noexcept(noexcept(T(instance<U&&>())))
Chris@63 934 : isSet(other.isSet) {
Chris@63 935 if (isSet) {
Chris@63 936 ctor(value, kj::mv(other.value));
Chris@63 937 }
Chris@63 938 }
Chris@63 939 template <typename U>
Chris@63 940 inline NullableValue(const NullableValue<U>& other)
Chris@63 941 : isSet(other.isSet) {
Chris@63 942 if (isSet) {
Chris@63 943 ctor(value, other.value);
Chris@63 944 }
Chris@63 945 }
Chris@63 946 template <typename U>
Chris@63 947 inline NullableValue(const NullableValue<U&>& other)
Chris@63 948 : isSet(other.isSet) {
Chris@63 949 if (isSet) {
Chris@63 950 ctor(value, *other.ptr);
Chris@63 951 }
Chris@63 952 }
Chris@63 953 inline NullableValue(decltype(nullptr)): isSet(false) {}
Chris@63 954
Chris@63 955 inline NullableValue& operator=(NullableValue&& other) {
Chris@63 956 if (&other != this) {
Chris@63 957 // Careful about throwing destructors/constructors here.
Chris@63 958 if (isSet) {
Chris@63 959 isSet = false;
Chris@63 960 dtor(value);
Chris@63 961 }
Chris@63 962 if (other.isSet) {
Chris@63 963 ctor(value, kj::mv(other.value));
Chris@63 964 isSet = true;
Chris@63 965 }
Chris@63 966 }
Chris@63 967 return *this;
Chris@63 968 }
Chris@63 969
Chris@63 970 inline NullableValue& operator=(NullableValue& other) {
Chris@63 971 if (&other != this) {
Chris@63 972 // Careful about throwing destructors/constructors here.
Chris@63 973 if (isSet) {
Chris@63 974 isSet = false;
Chris@63 975 dtor(value);
Chris@63 976 }
Chris@63 977 if (other.isSet) {
Chris@63 978 ctor(value, other.value);
Chris@63 979 isSet = true;
Chris@63 980 }
Chris@63 981 }
Chris@63 982 return *this;
Chris@63 983 }
Chris@63 984
Chris@63 985 inline NullableValue& operator=(const NullableValue& other) {
Chris@63 986 if (&other != this) {
Chris@63 987 // Careful about throwing destructors/constructors here.
Chris@63 988 if (isSet) {
Chris@63 989 isSet = false;
Chris@63 990 dtor(value);
Chris@63 991 }
Chris@63 992 if (other.isSet) {
Chris@63 993 ctor(value, other.value);
Chris@63 994 isSet = true;
Chris@63 995 }
Chris@63 996 }
Chris@63 997 return *this;
Chris@63 998 }
Chris@63 999
Chris@63 1000 inline bool operator==(decltype(nullptr)) const { return !isSet; }
Chris@63 1001 inline bool operator!=(decltype(nullptr)) const { return isSet; }
Chris@63 1002
Chris@63 1003 private:
Chris@63 1004 bool isSet;
Chris@63 1005
Chris@63 1006 #if _MSC_VER
Chris@63 1007 #pragma warning(push)
Chris@63 1008 #pragma warning(disable: 4624)
Chris@63 1009 // Warns that the anonymous union has a deleted destructor when T is non-trivial. This warning
Chris@63 1010 // seems broken.
Chris@63 1011 #endif
Chris@63 1012
Chris@63 1013 union {
Chris@63 1014 T value;
Chris@63 1015 };
Chris@63 1016
Chris@63 1017 #if _MSC_VER
Chris@63 1018 #pragma warning(pop)
Chris@63 1019 #endif
Chris@63 1020
Chris@63 1021 friend class kj::Maybe<T>;
Chris@63 1022 template <typename U>
Chris@63 1023 friend NullableValue<U>&& readMaybe(Maybe<U>&& maybe);
Chris@63 1024 };
Chris@63 1025
Chris@63 1026 template <typename T>
Chris@63 1027 inline NullableValue<T>&& readMaybe(Maybe<T>&& maybe) { return kj::mv(maybe.ptr); }
Chris@63 1028 template <typename T>
Chris@63 1029 inline T* readMaybe(Maybe<T>& maybe) { return maybe.ptr; }
Chris@63 1030 template <typename T>
Chris@63 1031 inline const T* readMaybe(const Maybe<T>& maybe) { return maybe.ptr; }
Chris@63 1032 template <typename T>
Chris@63 1033 inline T* readMaybe(Maybe<T&>&& maybe) { return maybe.ptr; }
Chris@63 1034 template <typename T>
Chris@63 1035 inline T* readMaybe(const Maybe<T&>& maybe) { return maybe.ptr; }
Chris@63 1036
Chris@63 1037 template <typename T>
Chris@63 1038 inline T* readMaybe(T* ptr) { return ptr; }
Chris@63 1039 // Allow KJ_IF_MAYBE to work on regular pointers.
Chris@63 1040
Chris@63 1041 } // namespace _ (private)
Chris@63 1042
Chris@63 1043 #define KJ_IF_MAYBE(name, exp) if (auto name = ::kj::_::readMaybe(exp))
Chris@63 1044
Chris@63 1045 template <typename T>
Chris@63 1046 class Maybe {
Chris@63 1047 // A T, or nullptr.
Chris@63 1048
Chris@63 1049 // IF YOU CHANGE THIS CLASS: Note that there is a specialization of it in memory.h.
Chris@63 1050
Chris@63 1051 public:
Chris@63 1052 Maybe(): ptr(nullptr) {}
Chris@63 1053 Maybe(T&& t) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(t)) {}
Chris@63 1054 Maybe(T& t): ptr(t) {}
Chris@63 1055 Maybe(const T& t): ptr(t) {}
Chris@63 1056 Maybe(const T* t) noexcept: ptr(t) {}
Chris@63 1057 Maybe(Maybe&& other) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(other.ptr)) {}
Chris@63 1058 Maybe(const Maybe& other): ptr(other.ptr) {}
Chris@63 1059 Maybe(Maybe& other): ptr(other.ptr) {}
Chris@63 1060
Chris@63 1061 template <typename U>
Chris@63 1062 Maybe(Maybe<U>&& other) noexcept(noexcept(T(instance<U&&>()))) {
Chris@63 1063 KJ_IF_MAYBE(val, kj::mv(other)) {
Chris@63 1064 ptr.emplace(kj::mv(*val));
Chris@63 1065 }
Chris@63 1066 }
Chris@63 1067 template <typename U>
Chris@63 1068 Maybe(const Maybe<U>& other) {
Chris@63 1069 KJ_IF_MAYBE(val, other) {
Chris@63 1070 ptr.emplace(*val);
Chris@63 1071 }
Chris@63 1072 }
Chris@63 1073
Chris@63 1074 Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}
Chris@63 1075
Chris@63 1076 template <typename... Params>
Chris@63 1077 inline T& emplace(Params&&... params) {
Chris@63 1078 // Replace this Maybe's content with a new value constructed by passing the given parametrs to
Chris@63 1079 // T's constructor. This can be used to initialize a Maybe without copying or even moving a T.
Chris@63 1080 // Returns a reference to the newly-constructed value.
Chris@63 1081
Chris@63 1082 return ptr.emplace(kj::fwd<Params>(params)...);
Chris@63 1083 }
Chris@63 1084
Chris@63 1085 inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); return *this; }
Chris@63 1086 inline Maybe& operator=(Maybe& other) { ptr = other.ptr; return *this; }
Chris@63 1087 inline Maybe& operator=(const Maybe& other) { ptr = other.ptr; return *this; }
Chris@63 1088
Chris@63 1089 inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
Chris@63 1090 inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }
Chris@63 1091
Chris@63 1092 T& orDefault(T& defaultValue) {
Chris@63 1093 if (ptr == nullptr) {
Chris@63 1094 return defaultValue;
Chris@63 1095 } else {
Chris@63 1096 return *ptr;
Chris@63 1097 }
Chris@63 1098 }
Chris@63 1099 const T& orDefault(const T& defaultValue) const {
Chris@63 1100 if (ptr == nullptr) {
Chris@63 1101 return defaultValue;
Chris@63 1102 } else {
Chris@63 1103 return *ptr;
Chris@63 1104 }
Chris@63 1105 }
Chris@63 1106
Chris@63 1107 template <typename Func>
Chris@63 1108 auto map(Func&& f) & -> Maybe<decltype(f(instance<T&>()))> {
Chris@63 1109 if (ptr == nullptr) {
Chris@63 1110 return nullptr;
Chris@63 1111 } else {
Chris@63 1112 return f(*ptr);
Chris@63 1113 }
Chris@63 1114 }
Chris@63 1115
Chris@63 1116 template <typename Func>
Chris@63 1117 auto map(Func&& f) const & -> Maybe<decltype(f(instance<const T&>()))> {
Chris@63 1118 if (ptr == nullptr) {
Chris@63 1119 return nullptr;
Chris@63 1120 } else {
Chris@63 1121 return f(*ptr);
Chris@63 1122 }
Chris@63 1123 }
Chris@63 1124
Chris@63 1125 template <typename Func>
Chris@63 1126 auto map(Func&& f) && -> Maybe<decltype(f(instance<T&&>()))> {
Chris@63 1127 if (ptr == nullptr) {
Chris@63 1128 return nullptr;
Chris@63 1129 } else {
Chris@63 1130 return f(kj::mv(*ptr));
Chris@63 1131 }
Chris@63 1132 }
Chris@63 1133
Chris@63 1134 template <typename Func>
Chris@63 1135 auto map(Func&& f) const && -> Maybe<decltype(f(instance<const T&&>()))> {
Chris@63 1136 if (ptr == nullptr) {
Chris@63 1137 return nullptr;
Chris@63 1138 } else {
Chris@63 1139 return f(kj::mv(*ptr));
Chris@63 1140 }
Chris@63 1141 }
Chris@63 1142
Chris@63 1143 private:
Chris@63 1144 _::NullableValue<T> ptr;
Chris@63 1145
Chris@63 1146 template <typename U>
Chris@63 1147 friend class Maybe;
Chris@63 1148 template <typename U>
Chris@63 1149 friend _::NullableValue<U>&& _::readMaybe(Maybe<U>&& maybe);
Chris@63 1150 template <typename U>
Chris@63 1151 friend U* _::readMaybe(Maybe<U>& maybe);
Chris@63 1152 template <typename U>
Chris@63 1153 friend const U* _::readMaybe(const Maybe<U>& maybe);
Chris@63 1154 };
Chris@63 1155
Chris@63 1156 template <typename T>
Chris@63 1157 class Maybe<T&>: public DisallowConstCopyIfNotConst<T> {
Chris@63 1158 public:
Chris@63 1159 Maybe() noexcept: ptr(nullptr) {}
Chris@63 1160 Maybe(T& t) noexcept: ptr(&t) {}
Chris@63 1161 Maybe(T* t) noexcept: ptr(t) {}
Chris@63 1162
Chris@63 1163 template <typename U>
Chris@63 1164 inline Maybe(Maybe<U&>& other) noexcept: ptr(other.ptr) {}
Chris@63 1165 template <typename U>
Chris@63 1166 inline Maybe(const Maybe<const U&>& other) noexcept: ptr(other.ptr) {}
Chris@63 1167 inline Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}
Chris@63 1168
Chris@63 1169 inline Maybe& operator=(T& other) noexcept { ptr = &other; return *this; }
Chris@63 1170 inline Maybe& operator=(T* other) noexcept { ptr = other; return *this; }
Chris@63 1171 template <typename U>
Chris@63 1172 inline Maybe& operator=(Maybe<U&>& other) noexcept { ptr = other.ptr; return *this; }
Chris@63 1173 template <typename U>
Chris@63 1174 inline Maybe& operator=(const Maybe<const U&>& other) noexcept { ptr = other.ptr; return *this; }
Chris@63 1175
Chris@63 1176 inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
Chris@63 1177 inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }
Chris@63 1178
Chris@63 1179 T& orDefault(T& defaultValue) {
Chris@63 1180 if (ptr == nullptr) {
Chris@63 1181 return defaultValue;
Chris@63 1182 } else {
Chris@63 1183 return *ptr;
Chris@63 1184 }
Chris@63 1185 }
Chris@63 1186 const T& orDefault(const T& defaultValue) const {
Chris@63 1187 if (ptr == nullptr) {
Chris@63 1188 return defaultValue;
Chris@63 1189 } else {
Chris@63 1190 return *ptr;
Chris@63 1191 }
Chris@63 1192 }
Chris@63 1193
Chris@63 1194 template <typename Func>
Chris@63 1195 auto map(Func&& f) -> Maybe<decltype(f(instance<T&>()))> {
Chris@63 1196 if (ptr == nullptr) {
Chris@63 1197 return nullptr;
Chris@63 1198 } else {
Chris@63 1199 return f(*ptr);
Chris@63 1200 }
Chris@63 1201 }
Chris@63 1202
Chris@63 1203 private:
Chris@63 1204 T* ptr;
Chris@63 1205
Chris@63 1206 template <typename U>
Chris@63 1207 friend class Maybe;
Chris@63 1208 template <typename U>
Chris@63 1209 friend U* _::readMaybe(Maybe<U&>&& maybe);
Chris@63 1210 template <typename U>
Chris@63 1211 friend U* _::readMaybe(const Maybe<U&>& maybe);
Chris@63 1212 };
Chris@63 1213
Chris@63 1214 // =======================================================================================
Chris@63 1215 // ArrayPtr
Chris@63 1216 //
Chris@63 1217 // So common that we put it in common.h rather than array.h.
Chris@63 1218
Chris@63 1219 template <typename T>
Chris@63 1220 class ArrayPtr: public DisallowConstCopyIfNotConst<T> {
Chris@63 1221 // A pointer to an array. Includes a size. Like any pointer, it doesn't own the target data,
Chris@63 1222 // and passing by value only copies the pointer, not the target.
Chris@63 1223
Chris@63 1224 public:
Chris@63 1225 inline constexpr ArrayPtr(): ptr(nullptr), size_(0) {}
Chris@63 1226 inline constexpr ArrayPtr(decltype(nullptr)): ptr(nullptr), size_(0) {}
Chris@63 1227 inline constexpr ArrayPtr(T* ptr, size_t size): ptr(ptr), size_(size) {}
Chris@63 1228 inline constexpr ArrayPtr(T* begin, T* end): ptr(begin), size_(end - begin) {}
Chris@63 1229 inline KJ_CONSTEXPR() ArrayPtr(::std::initializer_list<RemoveConstOrDisable<T>> init)
Chris@63 1230 : ptr(init.begin()), size_(init.size()) {}
Chris@63 1231
Chris@63 1232 template <size_t size>
Chris@63 1233 inline constexpr ArrayPtr(T (&native)[size]): ptr(native), size_(size) {}
Chris@63 1234 // Construct an ArrayPtr from a native C-style array.
Chris@63 1235
Chris@63 1236 inline operator ArrayPtr<const T>() const {
Chris@63 1237 return ArrayPtr<const T>(ptr, size_);
Chris@63 1238 }
Chris@63 1239 inline ArrayPtr<const T> asConst() const {
Chris@63 1240 return ArrayPtr<const T>(ptr, size_);
Chris@63 1241 }
Chris@63 1242
Chris@63 1243 inline size_t size() const { return size_; }
Chris@63 1244 inline const T& operator[](size_t index) const {
Chris@63 1245 KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
Chris@63 1246 return ptr[index];
Chris@63 1247 }
Chris@63 1248 inline T& operator[](size_t index) {
Chris@63 1249 KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
Chris@63 1250 return ptr[index];
Chris@63 1251 }
Chris@63 1252
Chris@63 1253 inline T* begin() { return ptr; }
Chris@63 1254 inline T* end() { return ptr + size_; }
Chris@63 1255 inline T& front() { return *ptr; }
Chris@63 1256 inline T& back() { return *(ptr + size_ - 1); }
Chris@63 1257 inline const T* begin() const { return ptr; }
Chris@63 1258 inline const T* end() const { return ptr + size_; }
Chris@63 1259 inline const T& front() const { return *ptr; }
Chris@63 1260 inline const T& back() const { return *(ptr + size_ - 1); }
Chris@63 1261
Chris@63 1262 inline ArrayPtr<const T> slice(size_t start, size_t end) const {
Chris@63 1263 KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
Chris@63 1264 return ArrayPtr<const T>(ptr + start, end - start);
Chris@63 1265 }
Chris@63 1266 inline ArrayPtr slice(size_t start, size_t end) {
Chris@63 1267 KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
Chris@63 1268 return ArrayPtr(ptr + start, end - start);
Chris@63 1269 }
Chris@63 1270
Chris@63 1271 inline ArrayPtr<PropagateConst<T, byte>> asBytes() const {
Chris@63 1272 // Reinterpret the array as a byte array. This is explicitly legal under C++ aliasing
Chris@63 1273 // rules.
Chris@63 1274 return { reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_ * sizeof(T) };
Chris@63 1275 }
Chris@63 1276 inline ArrayPtr<PropagateConst<T, char>> asChars() const {
Chris@63 1277 // Reinterpret the array as a char array. This is explicitly legal under C++ aliasing
Chris@63 1278 // rules.
Chris@63 1279 return { reinterpret_cast<PropagateConst<T, char>*>(ptr), size_ * sizeof(T) };
Chris@63 1280 }
Chris@63 1281
Chris@63 1282 inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
Chris@63 1283 inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }
Chris@63 1284
Chris@63 1285 inline bool operator==(const ArrayPtr& other) const {
Chris@63 1286 if (size_ != other.size_) return false;
Chris@63 1287 for (size_t i = 0; i < size_; i++) {
Chris@63 1288 if (ptr[i] != other[i]) return false;
Chris@63 1289 }
Chris@63 1290 return true;
Chris@63 1291 }
Chris@63 1292 inline bool operator!=(const ArrayPtr& other) const { return !(*this == other); }
Chris@63 1293
Chris@63 1294 private:
Chris@63 1295 T* ptr;
Chris@63 1296 size_t size_;
Chris@63 1297 };
Chris@63 1298
Chris@63 1299 template <typename T>
Chris@63 1300 inline constexpr ArrayPtr<T> arrayPtr(T* ptr, size_t size) {
Chris@63 1301 // Use this function to construct ArrayPtrs without writing out the type name.
Chris@63 1302 return ArrayPtr<T>(ptr, size);
Chris@63 1303 }
Chris@63 1304
Chris@63 1305 template <typename T>
Chris@63 1306 inline constexpr ArrayPtr<T> arrayPtr(T* begin, T* end) {
Chris@63 1307 // Use this function to construct ArrayPtrs without writing out the type name.
Chris@63 1308 return ArrayPtr<T>(begin, end);
Chris@63 1309 }
Chris@63 1310
Chris@63 1311 // =======================================================================================
Chris@63 1312 // Casts
Chris@63 1313
Chris@63 1314 template <typename To, typename From>
Chris@63 1315 To implicitCast(From&& from) {
Chris@63 1316 // `implicitCast<T>(value)` casts `value` to type `T` only if the conversion is implicit. Useful
Chris@63 1317 // for e.g. resolving ambiguous overloads without sacrificing type-safety.
Chris@63 1318 return kj::fwd<From>(from);
Chris@63 1319 }
Chris@63 1320
Chris@63 1321 template <typename To, typename From>
Chris@63 1322 Maybe<To&> dynamicDowncastIfAvailable(From& from) {
Chris@63 1323 // If RTTI is disabled, always returns nullptr. Otherwise, works like dynamic_cast. Useful
Chris@63 1324 // in situations where dynamic_cast could allow an optimization, but isn't strictly necessary
Chris@63 1325 // for correctness. It is highly recommended that you try to arrange all your dynamic_casts
Chris@63 1326 // this way, as a dynamic_cast that is necessary for correctness implies a flaw in the interface
Chris@63 1327 // design.
Chris@63 1328
Chris@63 1329 // Force a compile error if To is not a subtype of From. Cross-casting is rare; if it is needed
Chris@63 1330 // we should have a separate cast function like dynamicCrosscastIfAvailable().
Chris@63 1331 if (false) {
Chris@63 1332 kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
Chris@63 1333 }
Chris@63 1334
Chris@63 1335 #if KJ_NO_RTTI
Chris@63 1336 return nullptr;
Chris@63 1337 #else
Chris@63 1338 return dynamic_cast<To*>(&from);
Chris@63 1339 #endif
Chris@63 1340 }
Chris@63 1341
Chris@63 1342 template <typename To, typename From>
Chris@63 1343 To& downcast(From& from) {
Chris@63 1344 // Down-cast a value to a sub-type, asserting that the cast is valid. In opt mode this is a
Chris@63 1345 // static_cast, but in debug mode (when RTTI is enabled) a dynamic_cast will be used to verify
Chris@63 1346 // that the value really has the requested type.
Chris@63 1347
Chris@63 1348 // Force a compile error if To is not a subtype of From.
Chris@63 1349 if (false) {
Chris@63 1350 kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
Chris@63 1351 }
Chris@63 1352
Chris@63 1353 #if !KJ_NO_RTTI
Chris@63 1354 KJ_IREQUIRE(dynamic_cast<To*>(&from) != nullptr, "Value cannot be downcast() to requested type.");
Chris@63 1355 #endif
Chris@63 1356
Chris@63 1357 return static_cast<To&>(from);
Chris@63 1358 }
Chris@63 1359
Chris@63 1360 // =======================================================================================
Chris@63 1361 // Defer
Chris@63 1362
Chris@63 1363 namespace _ { // private
Chris@63 1364
Chris@63 1365 template <typename Func>
Chris@63 1366 class Deferred {
Chris@63 1367 public:
Chris@63 1368 inline Deferred(Func&& func): func(kj::fwd<Func>(func)), canceled(false) {}
Chris@63 1369 inline ~Deferred() noexcept(false) { if (!canceled) func(); }
Chris@63 1370 KJ_DISALLOW_COPY(Deferred);
Chris@63 1371
Chris@63 1372 // This move constructor is usually optimized away by the compiler.
Chris@63 1373 inline Deferred(Deferred&& other): func(kj::mv(other.func)), canceled(false) {
Chris@63 1374 other.canceled = true;
Chris@63 1375 }
Chris@63 1376 private:
Chris@63 1377 Func func;
Chris@63 1378 bool canceled;
Chris@63 1379 };
Chris@63 1380
Chris@63 1381 } // namespace _ (private)
Chris@63 1382
Chris@63 1383 template <typename Func>
Chris@63 1384 _::Deferred<Func> defer(Func&& func) {
Chris@63 1385 // Returns an object which will invoke the given functor in its destructor. The object is not
Chris@63 1386 // copyable but is movable with the semantics you'd expect. Since the return type is private,
Chris@63 1387 // you need to assign to an `auto` variable.
Chris@63 1388 //
Chris@63 1389 // The KJ_DEFER macro provides slightly more convenient syntax for the common case where you
Chris@63 1390 // want some code to run at current scope exit.
Chris@63 1391
Chris@63 1392 return _::Deferred<Func>(kj::fwd<Func>(func));
Chris@63 1393 }
Chris@63 1394
Chris@63 1395 #define KJ_DEFER(code) auto KJ_UNIQUE_NAME(_kjDefer) = ::kj::defer([&](){code;})
Chris@63 1396 // Run the given code when the function exits, whether by return or exception.
Chris@63 1397
Chris@63 1398 } // namespace kj
Chris@63 1399
Chris@63 1400 #endif // KJ_COMMON_H_