annotate src/fftw-3.3.3/dft/simd/common/n1fv_12.c @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:36:52 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-dft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 48 FP additions, 20 FP multiplications,
cannam@95 32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
cannam@95 33 * 49 stack variables, 2 constants, and 24 memory accesses
cannam@95 34 */
cannam@95 35 #include "n1f.h"
cannam@95 36
cannam@95 37 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@95 38 {
cannam@95 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@95 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 41 {
cannam@95 42 INT i;
cannam@95 43 const R *xi;
cannam@95 44 R *xo;
cannam@95 45 xi = ri;
cannam@95 46 xo = ro;
cannam@95 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
cannam@95 48 V T1, T6, Tk, Tn, Tc, Td, Tf, Tr, T4, Ts, T9, Tg, Te, Tl;
cannam@95 49 {
cannam@95 50 V T2, T3, T7, T8;
cannam@95 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
cannam@95 52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@95 53 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@95 54 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
cannam@95 55 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
cannam@95 56 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@95 57 Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@95 58 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
cannam@95 59 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
cannam@95 60 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@95 61 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@95 62 Tr = VSUB(T3, T2);
cannam@95 63 T4 = VADD(T2, T3);
cannam@95 64 Ts = VSUB(T8, T7);
cannam@95 65 T9 = VADD(T7, T8);
cannam@95 66 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@95 67 }
cannam@95 68 Te = VSUB(Tc, Td);
cannam@95 69 Tl = VADD(Td, Tc);
cannam@95 70 {
cannam@95 71 V T5, TF, TB, Tt, Ta, TG, Th, To, Tm, TI;
cannam@95 72 T5 = VFNMS(LDK(KP500000000), T4, T1);
cannam@95 73 TF = VADD(T1, T4);
cannam@95 74 TB = VADD(Tr, Ts);
cannam@95 75 Tt = VSUB(Tr, Ts);
cannam@95 76 Ta = VFNMS(LDK(KP500000000), T9, T6);
cannam@95 77 TG = VADD(T6, T9);
cannam@95 78 Th = VSUB(Tf, Tg);
cannam@95 79 To = VADD(Tf, Tg);
cannam@95 80 Tm = VFNMS(LDK(KP500000000), Tl, Tk);
cannam@95 81 TI = VADD(Tk, Tl);
cannam@95 82 {
cannam@95 83 V TH, TL, Tb, Tx, TJ, Tp, Ti, TA;
cannam@95 84 TH = VSUB(TF, TG);
cannam@95 85 TL = VADD(TF, TG);
cannam@95 86 Tb = VSUB(T5, Ta);
cannam@95 87 Tx = VADD(T5, Ta);
cannam@95 88 TJ = VADD(Tn, To);
cannam@95 89 Tp = VFNMS(LDK(KP500000000), To, Tn);
cannam@95 90 Ti = VADD(Te, Th);
cannam@95 91 TA = VSUB(Te, Th);
cannam@95 92 {
cannam@95 93 V Tq, Ty, TK, TM;
cannam@95 94 Tq = VSUB(Tm, Tp);
cannam@95 95 Ty = VADD(Tm, Tp);
cannam@95 96 TK = VSUB(TI, TJ);
cannam@95 97 TM = VADD(TI, TJ);
cannam@95 98 {
cannam@95 99 V TC, TE, Tj, Tv;
cannam@95 100 TC = VMUL(LDK(KP866025403), VSUB(TA, TB));
cannam@95 101 TE = VMUL(LDK(KP866025403), VADD(TB, TA));
cannam@95 102 Tj = VFMA(LDK(KP866025403), Ti, Tb);
cannam@95 103 Tv = VFNMS(LDK(KP866025403), Ti, Tb);
cannam@95 104 {
cannam@95 105 V Tz, TD, Tu, Tw;
cannam@95 106 Tz = VSUB(Tx, Ty);
cannam@95 107 TD = VADD(Tx, Ty);
cannam@95 108 Tu = VFNMS(LDK(KP866025403), Tt, Tq);
cannam@95 109 Tw = VFMA(LDK(KP866025403), Tt, Tq);
cannam@95 110 ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0]));
cannam@95 111 ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0]));
cannam@95 112 ST(&(xo[WS(os, 3)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)]));
cannam@95 113 ST(&(xo[WS(os, 9)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
cannam@95 114 ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0]));
cannam@95 115 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
cannam@95 116 ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tz), ovs, &(xo[0]));
cannam@95 117 ST(&(xo[WS(os, 2)]), VFMAI(TC, Tz), ovs, &(xo[0]));
cannam@95 118 ST(&(xo[WS(os, 5)]), VFNMSI(Tw, Tv), ovs, &(xo[WS(os, 1)]));
cannam@95 119 ST(&(xo[WS(os, 7)]), VFMAI(Tw, Tv), ovs, &(xo[WS(os, 1)]));
cannam@95 120 ST(&(xo[WS(os, 11)]), VFMAI(Tu, Tj), ovs, &(xo[WS(os, 1)]));
cannam@95 121 ST(&(xo[WS(os, 1)]), VFNMSI(Tu, Tj), ovs, &(xo[WS(os, 1)]));
cannam@95 122 }
cannam@95 123 }
cannam@95 124 }
cannam@95 125 }
cannam@95 126 }
cannam@95 127 }
cannam@95 128 }
cannam@95 129 VLEAVE();
cannam@95 130 }
cannam@95 131
cannam@95 132 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 };
cannam@95 133
cannam@95 134 void XSIMD(codelet_n1fv_12) (planner *p) {
cannam@95 135 X(kdft_register) (p, n1fv_12, &desc);
cannam@95 136 }
cannam@95 137
cannam@95 138 #else /* HAVE_FMA */
cannam@95 139
cannam@95 140 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */
cannam@95 141
cannam@95 142 /*
cannam@95 143 * This function contains 48 FP additions, 8 FP multiplications,
cannam@95 144 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
cannam@95 145 * 27 stack variables, 2 constants, and 24 memory accesses
cannam@95 146 */
cannam@95 147 #include "n1f.h"
cannam@95 148
cannam@95 149 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@95 150 {
cannam@95 151 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 152 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@95 153 {
cannam@95 154 INT i;
cannam@95 155 const R *xi;
cannam@95 156 R *xo;
cannam@95 157 xi = ri;
cannam@95 158 xo = ro;
cannam@95 159 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
cannam@95 160 V T5, Ta, TJ, Ty, Tq, Tp, Tg, Tl, TI, TA, Tz, Tu;
cannam@95 161 {
cannam@95 162 V T1, T6, T4, Tw, T9, Tx;
cannam@95 163 T1 = LD(&(xi[0]), ivs, &(xi[0]));
cannam@95 164 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@95 165 {
cannam@95 166 V T2, T3, T7, T8;
cannam@95 167 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@95 168 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
cannam@95 169 T4 = VADD(T2, T3);
cannam@95 170 Tw = VSUB(T3, T2);
cannam@95 171 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
cannam@95 172 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@95 173 T9 = VADD(T7, T8);
cannam@95 174 Tx = VSUB(T8, T7);
cannam@95 175 }
cannam@95 176 T5 = VADD(T1, T4);
cannam@95 177 Ta = VADD(T6, T9);
cannam@95 178 TJ = VADD(Tw, Tx);
cannam@95 179 Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx));
cannam@95 180 Tq = VFNMS(LDK(KP500000000), T9, T6);
cannam@95 181 Tp = VFNMS(LDK(KP500000000), T4, T1);
cannam@95 182 }
cannam@95 183 {
cannam@95 184 V Tc, Th, Tf, Ts, Tk, Tt;
cannam@95 185 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@95 186 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
cannam@95 187 {
cannam@95 188 V Td, Te, Ti, Tj;
cannam@95 189 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@95 190 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
cannam@95 191 Tf = VADD(Td, Te);
cannam@95 192 Ts = VSUB(Te, Td);
cannam@95 193 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@95 194 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@95 195 Tk = VADD(Ti, Tj);
cannam@95 196 Tt = VSUB(Tj, Ti);
cannam@95 197 }
cannam@95 198 Tg = VADD(Tc, Tf);
cannam@95 199 Tl = VADD(Th, Tk);
cannam@95 200 TI = VADD(Ts, Tt);
cannam@95 201 TA = VFNMS(LDK(KP500000000), Tk, Th);
cannam@95 202 Tz = VFNMS(LDK(KP500000000), Tf, Tc);
cannam@95 203 Tu = VMUL(LDK(KP866025403), VSUB(Ts, Tt));
cannam@95 204 }
cannam@95 205 {
cannam@95 206 V Tb, Tm, Tn, To;
cannam@95 207 Tb = VSUB(T5, Ta);
cannam@95 208 Tm = VBYI(VSUB(Tg, Tl));
cannam@95 209 ST(&(xo[WS(os, 9)]), VSUB(Tb, Tm), ovs, &(xo[WS(os, 1)]));
cannam@95 210 ST(&(xo[WS(os, 3)]), VADD(Tb, Tm), ovs, &(xo[WS(os, 1)]));
cannam@95 211 Tn = VADD(T5, Ta);
cannam@95 212 To = VADD(Tg, Tl);
cannam@95 213 ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0]));
cannam@95 214 ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0]));
cannam@95 215 }
cannam@95 216 {
cannam@95 217 V Tv, TE, TC, TD, Tr, TB;
cannam@95 218 Tr = VSUB(Tp, Tq);
cannam@95 219 Tv = VSUB(Tr, Tu);
cannam@95 220 TE = VADD(Tr, Tu);
cannam@95 221 TB = VSUB(Tz, TA);
cannam@95 222 TC = VBYI(VADD(Ty, TB));
cannam@95 223 TD = VBYI(VSUB(Ty, TB));
cannam@95 224 ST(&(xo[WS(os, 5)]), VSUB(Tv, TC), ovs, &(xo[WS(os, 1)]));
cannam@95 225 ST(&(xo[WS(os, 11)]), VSUB(TE, TD), ovs, &(xo[WS(os, 1)]));
cannam@95 226 ST(&(xo[WS(os, 7)]), VADD(TC, Tv), ovs, &(xo[WS(os, 1)]));
cannam@95 227 ST(&(xo[WS(os, 1)]), VADD(TD, TE), ovs, &(xo[WS(os, 1)]));
cannam@95 228 }
cannam@95 229 {
cannam@95 230 V TK, TM, TH, TL, TF, TG;
cannam@95 231 TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ)));
cannam@95 232 TM = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI)));
cannam@95 233 TF = VADD(Tp, Tq);
cannam@95 234 TG = VADD(Tz, TA);
cannam@95 235 TH = VSUB(TF, TG);
cannam@95 236 TL = VADD(TF, TG);
cannam@95 237 ST(&(xo[WS(os, 10)]), VSUB(TH, TK), ovs, &(xo[0]));
cannam@95 238 ST(&(xo[WS(os, 4)]), VADD(TL, TM), ovs, &(xo[0]));
cannam@95 239 ST(&(xo[WS(os, 2)]), VADD(TH, TK), ovs, &(xo[0]));
cannam@95 240 ST(&(xo[WS(os, 8)]), VSUB(TL, TM), ovs, &(xo[0]));
cannam@95 241 }
cannam@95 242 }
cannam@95 243 }
cannam@95 244 VLEAVE();
cannam@95 245 }
cannam@95 246
cannam@95 247 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 };
cannam@95 248
cannam@95 249 void XSIMD(codelet_n1fv_12) (planner *p) {
cannam@95 250 X(kdft_register) (p, n1fv_12, &desc);
cannam@95 251 }
cannam@95 252
cannam@95 253 #endif /* HAVE_FMA */