annotate src/fftw-3.3.3/threads/threads.c @ 107:71c914cf6201

Portaudio: add missed file
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 26 Mar 2013 12:14:11 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* threads.c: Portable thread spawning for loops, via the X(spawn_loop)
cannam@95 22 function. The first portion of this file is a set of macros to
cannam@95 23 spawn and join threads on various systems. */
cannam@95 24
cannam@95 25 #include "threads.h"
cannam@95 26
cannam@95 27 #if defined(USING_POSIX_THREADS)
cannam@95 28
cannam@95 29 #include <pthread.h>
cannam@95 30
cannam@95 31 #ifdef HAVE_UNISTD_H
cannam@95 32 # include <unistd.h>
cannam@95 33 #endif
cannam@95 34
cannam@95 35 /* imlementation of semaphores and mutexes: */
cannam@95 36 #if (defined(_POSIX_SEMAPHORES) && (_POSIX_SEMAPHORES >= 200112L))
cannam@95 37
cannam@95 38 /* If optional POSIX semaphores are supported, use them to
cannam@95 39 implement both semaphores and mutexes. */
cannam@95 40 # include <semaphore.h>
cannam@95 41 # include <errno.h>
cannam@95 42
cannam@95 43 typedef sem_t os_sem_t;
cannam@95 44
cannam@95 45 static void os_sem_init(os_sem_t *s) { sem_init(s, 0, 0); }
cannam@95 46 static void os_sem_destroy(os_sem_t *s) { sem_destroy(s); }
cannam@95 47
cannam@95 48 static void os_sem_down(os_sem_t *s)
cannam@95 49 {
cannam@95 50 int err;
cannam@95 51 do {
cannam@95 52 err = sem_wait(s);
cannam@95 53 } while (err == -1 && errno == EINTR);
cannam@95 54 CK(err == 0);
cannam@95 55 }
cannam@95 56
cannam@95 57 static void os_sem_up(os_sem_t *s) { sem_post(s); }
cannam@95 58
cannam@95 59 /*
cannam@95 60 The reason why we use sem_t to implement mutexes is that I have
cannam@95 61 seen mysterious hangs with glibc-2.7 and linux-2.6.22 when using
cannam@95 62 pthread_mutex_t, but no hangs with sem_t or with linux >=
cannam@95 63 2.6.24. For lack of better information, sem_t looks like the
cannam@95 64 safest choice.
cannam@95 65 */
cannam@95 66 typedef sem_t os_mutex_t;
cannam@95 67 static void os_mutex_init(os_mutex_t *s) { sem_init(s, 0, 1); }
cannam@95 68 #define os_mutex_destroy os_sem_destroy
cannam@95 69 #define os_mutex_lock os_sem_down
cannam@95 70 #define os_mutex_unlock os_sem_up
cannam@95 71
cannam@95 72 #else
cannam@95 73
cannam@95 74 /* If optional POSIX semaphores are not defined, use pthread
cannam@95 75 mutexes for mutexes, and simulate semaphores with condition
cannam@95 76 variables */
cannam@95 77 typedef pthread_mutex_t os_mutex_t;
cannam@95 78
cannam@95 79 static void os_mutex_init(os_mutex_t *s)
cannam@95 80 {
cannam@95 81 pthread_mutex_init(s, (pthread_mutexattr_t *)0);
cannam@95 82 }
cannam@95 83
cannam@95 84 static void os_mutex_destroy(os_mutex_t *s) { pthread_mutex_destroy(s); }
cannam@95 85 static void os_mutex_lock(os_mutex_t *s) { pthread_mutex_lock(s); }
cannam@95 86 static void os_mutex_unlock(os_mutex_t *s) { pthread_mutex_unlock(s); }
cannam@95 87
cannam@95 88 typedef struct {
cannam@95 89 pthread_mutex_t m;
cannam@95 90 pthread_cond_t c;
cannam@95 91 volatile int x;
cannam@95 92 } os_sem_t;
cannam@95 93
cannam@95 94 static void os_sem_init(os_sem_t *s)
cannam@95 95 {
cannam@95 96 pthread_mutex_init(&s->m, (pthread_mutexattr_t *)0);
cannam@95 97 pthread_cond_init(&s->c, (pthread_condattr_t *)0);
cannam@95 98
cannam@95 99 /* wrap initialization in lock to exploit the release
cannam@95 100 semantics of pthread_mutex_unlock() */
cannam@95 101 pthread_mutex_lock(&s->m);
cannam@95 102 s->x = 0;
cannam@95 103 pthread_mutex_unlock(&s->m);
cannam@95 104 }
cannam@95 105
cannam@95 106 static void os_sem_destroy(os_sem_t *s)
cannam@95 107 {
cannam@95 108 pthread_mutex_destroy(&s->m);
cannam@95 109 pthread_cond_destroy(&s->c);
cannam@95 110 }
cannam@95 111
cannam@95 112 static void os_sem_down(os_sem_t *s)
cannam@95 113 {
cannam@95 114 pthread_mutex_lock(&s->m);
cannam@95 115 while (s->x <= 0)
cannam@95 116 pthread_cond_wait(&s->c, &s->m);
cannam@95 117 --s->x;
cannam@95 118 pthread_mutex_unlock(&s->m);
cannam@95 119 }
cannam@95 120
cannam@95 121 static void os_sem_up(os_sem_t *s)
cannam@95 122 {
cannam@95 123 pthread_mutex_lock(&s->m);
cannam@95 124 ++s->x;
cannam@95 125 pthread_cond_signal(&s->c);
cannam@95 126 pthread_mutex_unlock(&s->m);
cannam@95 127 }
cannam@95 128
cannam@95 129 #endif
cannam@95 130
cannam@95 131 #define FFTW_WORKER void *
cannam@95 132
cannam@95 133 static void os_create_thread(FFTW_WORKER (*worker)(void *arg),
cannam@95 134 void *arg)
cannam@95 135 {
cannam@95 136 pthread_attr_t attr;
cannam@95 137 pthread_t tid;
cannam@95 138
cannam@95 139 pthread_attr_init(&attr);
cannam@95 140 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
cannam@95 141 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
cannam@95 142
cannam@95 143 pthread_create(&tid, &attr, worker, (void *)arg);
cannam@95 144 pthread_attr_destroy(&attr);
cannam@95 145 }
cannam@95 146
cannam@95 147 static void os_destroy_thread(void)
cannam@95 148 {
cannam@95 149 pthread_exit((void *)0);
cannam@95 150 }
cannam@95 151
cannam@95 152 #elif defined(__WIN32__) || defined(_WIN32) || defined(_WINDOWS)
cannam@95 153 /* hack: windef.h defines INT for its own purposes and this causes
cannam@95 154 a conflict with our own INT in ifftw.h. Divert the windows
cannam@95 155 definition into another name unlikely to cause a conflict */
cannam@95 156 #define INT magnus_ab_INTegro_seclorum_nascitur_ordo
cannam@95 157 #include <windows.h>
cannam@95 158 #include <process.h>
cannam@95 159 #undef INT
cannam@95 160
cannam@95 161 typedef HANDLE os_mutex_t;
cannam@95 162
cannam@95 163 static void os_mutex_init(os_mutex_t *s)
cannam@95 164 {
cannam@95 165 *s = CreateMutex(NULL, FALSE, NULL);
cannam@95 166 }
cannam@95 167
cannam@95 168 static void os_mutex_destroy(os_mutex_t *s)
cannam@95 169 {
cannam@95 170 CloseHandle(*s);
cannam@95 171 }
cannam@95 172
cannam@95 173 static void os_mutex_lock(os_mutex_t *s)
cannam@95 174 {
cannam@95 175 WaitForSingleObject(*s, INFINITE);
cannam@95 176 }
cannam@95 177
cannam@95 178 static void os_mutex_unlock(os_mutex_t *s)
cannam@95 179 {
cannam@95 180 ReleaseMutex(*s);
cannam@95 181 }
cannam@95 182
cannam@95 183 typedef HANDLE os_sem_t;
cannam@95 184
cannam@95 185 static void os_sem_init(os_sem_t *s)
cannam@95 186 {
cannam@95 187 *s = CreateSemaphore(NULL, 0, 0x7FFFFFFFL, NULL);
cannam@95 188 }
cannam@95 189
cannam@95 190 static void os_sem_destroy(os_sem_t *s)
cannam@95 191 {
cannam@95 192 CloseHandle(*s);
cannam@95 193 }
cannam@95 194
cannam@95 195 static void os_sem_down(os_sem_t *s)
cannam@95 196 {
cannam@95 197 WaitForSingleObject(*s, INFINITE);
cannam@95 198 }
cannam@95 199
cannam@95 200 static void os_sem_up(os_sem_t *s)
cannam@95 201 {
cannam@95 202 ReleaseSemaphore(*s, 1, NULL);
cannam@95 203 }
cannam@95 204
cannam@95 205 #define FFTW_WORKER unsigned __stdcall
cannam@95 206 typedef unsigned (__stdcall *winthread_start) (void *);
cannam@95 207
cannam@95 208 static void os_create_thread(winthread_start worker,
cannam@95 209 void *arg)
cannam@95 210 {
cannam@95 211 _beginthreadex((void *)NULL, /* security attrib */
cannam@95 212 0, /* stack size */
cannam@95 213 worker, /* start address */
cannam@95 214 arg, /* parameters */
cannam@95 215 0, /* creation flags */
cannam@95 216 (unsigned *)NULL); /* tid */
cannam@95 217 }
cannam@95 218
cannam@95 219 static void os_destroy_thread(void)
cannam@95 220 {
cannam@95 221 _endthreadex(0);
cannam@95 222 }
cannam@95 223
cannam@95 224
cannam@95 225 #else
cannam@95 226 #error "No threading layer defined"
cannam@95 227 #endif
cannam@95 228
cannam@95 229 /************************************************************************/
cannam@95 230
cannam@95 231 /* Main code: */
cannam@95 232 struct worker {
cannam@95 233 os_sem_t ready;
cannam@95 234 os_sem_t done;
cannam@95 235 struct work *w;
cannam@95 236 struct worker *cdr;
cannam@95 237 };
cannam@95 238
cannam@95 239 static struct worker *make_worker(void)
cannam@95 240 {
cannam@95 241 struct worker *q = (struct worker *)MALLOC(sizeof(*q), OTHER);
cannam@95 242 os_sem_init(&q->ready);
cannam@95 243 os_sem_init(&q->done);
cannam@95 244 return q;
cannam@95 245 }
cannam@95 246
cannam@95 247 static void unmake_worker(struct worker *q)
cannam@95 248 {
cannam@95 249 os_sem_destroy(&q->done);
cannam@95 250 os_sem_destroy(&q->ready);
cannam@95 251 X(ifree)(q);
cannam@95 252 }
cannam@95 253
cannam@95 254 struct work {
cannam@95 255 spawn_function proc;
cannam@95 256 spawn_data d;
cannam@95 257 struct worker *q; /* the worker responsible for performing this work */
cannam@95 258 };
cannam@95 259
cannam@95 260 static os_mutex_t queue_lock;
cannam@95 261 static os_sem_t termination_semaphore;
cannam@95 262
cannam@95 263 static struct worker *worker_queue;
cannam@95 264 #define WITH_QUEUE_LOCK(what) \
cannam@95 265 { \
cannam@95 266 os_mutex_lock(&queue_lock); \
cannam@95 267 what; \
cannam@95 268 os_mutex_unlock(&queue_lock); \
cannam@95 269 }
cannam@95 270
cannam@95 271 static FFTW_WORKER worker(void *arg)
cannam@95 272 {
cannam@95 273 struct worker *ego = (struct worker *)arg;
cannam@95 274 struct work *w;
cannam@95 275
cannam@95 276 for (;;) {
cannam@95 277 /* wait until work becomes available */
cannam@95 278 os_sem_down(&ego->ready);
cannam@95 279
cannam@95 280 w = ego->w;
cannam@95 281
cannam@95 282 /* !w->proc ==> terminate worker */
cannam@95 283 if (!w->proc) break;
cannam@95 284
cannam@95 285 /* do the work */
cannam@95 286 w->proc(&w->d);
cannam@95 287
cannam@95 288 /* signal that work is done */
cannam@95 289 os_sem_up(&ego->done);
cannam@95 290 }
cannam@95 291
cannam@95 292 /* termination protocol */
cannam@95 293 os_sem_up(&termination_semaphore);
cannam@95 294
cannam@95 295 os_destroy_thread();
cannam@95 296 /* UNREACHABLE */
cannam@95 297 return 0;
cannam@95 298 }
cannam@95 299
cannam@95 300 static void enqueue(struct worker *q)
cannam@95 301 {
cannam@95 302 WITH_QUEUE_LOCK({
cannam@95 303 q->cdr = worker_queue;
cannam@95 304 worker_queue = q;
cannam@95 305 });
cannam@95 306 }
cannam@95 307
cannam@95 308 static struct worker *dequeue(void)
cannam@95 309 {
cannam@95 310 struct worker *q;
cannam@95 311
cannam@95 312 WITH_QUEUE_LOCK({
cannam@95 313 q = worker_queue;
cannam@95 314 if (q)
cannam@95 315 worker_queue = q->cdr;
cannam@95 316 });
cannam@95 317
cannam@95 318 if (!q) {
cannam@95 319 /* no worker is available. Create one */
cannam@95 320 q = make_worker();
cannam@95 321 os_create_thread(worker, q);
cannam@95 322 }
cannam@95 323
cannam@95 324 return q;
cannam@95 325 }
cannam@95 326
cannam@95 327
cannam@95 328 static void kill_workforce(void)
cannam@95 329 {
cannam@95 330 struct work w;
cannam@95 331
cannam@95 332 w.proc = 0;
cannam@95 333
cannam@95 334 THREAD_ON; /* needed for debugging mode: since make_worker
cannam@95 335 is called from dequeue which is only called in
cannam@95 336 thread_on mode, we need to unmake_worker in thread_on. */
cannam@95 337 WITH_QUEUE_LOCK({
cannam@95 338 /* tell all workers that they must terminate.
cannam@95 339
cannam@95 340 Because workers enqueue themselves before signaling the
cannam@95 341 completion of the work, all workers belong to the worker queue
cannam@95 342 if we get here. Also, all workers are waiting at
cannam@95 343 os_sem_down(ready), so we can hold the queue lock without
cannam@95 344 deadlocking */
cannam@95 345 while (worker_queue) {
cannam@95 346 struct worker *q = worker_queue;
cannam@95 347 worker_queue = q->cdr;
cannam@95 348 q->w = &w;
cannam@95 349 os_sem_up(&q->ready);
cannam@95 350 os_sem_down(&termination_semaphore);
cannam@95 351 unmake_worker(q);
cannam@95 352 }
cannam@95 353 });
cannam@95 354 THREAD_OFF;
cannam@95 355 }
cannam@95 356
cannam@95 357 int X(ithreads_init)(void)
cannam@95 358 {
cannam@95 359 os_mutex_init(&queue_lock);
cannam@95 360 os_sem_init(&termination_semaphore);
cannam@95 361
cannam@95 362 WITH_QUEUE_LOCK({
cannam@95 363 worker_queue = 0;
cannam@95 364 })
cannam@95 365
cannam@95 366 return 0; /* no error */
cannam@95 367 }
cannam@95 368
cannam@95 369 /* Distribute a loop from 0 to loopmax-1 over nthreads threads.
cannam@95 370 proc(d) is called to execute a block of iterations from d->min
cannam@95 371 to d->max-1. d->thr_num indicate the number of the thread
cannam@95 372 that is executing proc (from 0 to nthreads-1), and d->data is
cannam@95 373 the same as the data parameter passed to X(spawn_loop).
cannam@95 374
cannam@95 375 This function returns only after all the threads have completed. */
cannam@95 376 void X(spawn_loop)(int loopmax, int nthr, spawn_function proc, void *data)
cannam@95 377 {
cannam@95 378 int block_size;
cannam@95 379 struct work *r;
cannam@95 380 int i;
cannam@95 381
cannam@95 382 A(loopmax >= 0);
cannam@95 383 A(nthr > 0);
cannam@95 384 A(proc);
cannam@95 385
cannam@95 386 if (!loopmax) return;
cannam@95 387
cannam@95 388 /* Choose the block size and number of threads in order to (1)
cannam@95 389 minimize the critical path and (2) use the fewest threads that
cannam@95 390 achieve the same critical path (to minimize overhead).
cannam@95 391 e.g. if loopmax is 5 and nthr is 4, we should use only 3
cannam@95 392 threads with block sizes of 2, 2, and 1. */
cannam@95 393 block_size = (loopmax + nthr - 1) / nthr;
cannam@95 394 nthr = (loopmax + block_size - 1) / block_size;
cannam@95 395
cannam@95 396 THREAD_ON; /* prevent debugging mode from failing under threads */
cannam@95 397 STACK_MALLOC(struct work *, r, sizeof(struct work) * nthr);
cannam@95 398
cannam@95 399 /* distribute work: */
cannam@95 400 for (i = 0; i < nthr; ++i) {
cannam@95 401 struct work *w = &r[i];
cannam@95 402 spawn_data *d = &w->d;
cannam@95 403
cannam@95 404 d->max = (d->min = i * block_size) + block_size;
cannam@95 405 if (d->max > loopmax)
cannam@95 406 d->max = loopmax;
cannam@95 407 d->thr_num = i;
cannam@95 408 d->data = data;
cannam@95 409 w->proc = proc;
cannam@95 410
cannam@95 411 if (i == nthr - 1) {
cannam@95 412 /* do the work ourselves */
cannam@95 413 proc(d);
cannam@95 414 } else {
cannam@95 415 /* assign a worker to W */
cannam@95 416 w->q = dequeue();
cannam@95 417
cannam@95 418 /* tell worker w->q to do it */
cannam@95 419 w->q->w = w; /* Dirac could have written this */
cannam@95 420 os_sem_up(&w->q->ready);
cannam@95 421 }
cannam@95 422 }
cannam@95 423
cannam@95 424 for (i = 0; i < nthr - 1; ++i) {
cannam@95 425 struct work *w = &r[i];
cannam@95 426 os_sem_down(&w->q->done);
cannam@95 427 enqueue(w->q);
cannam@95 428 }
cannam@95 429
cannam@95 430 STACK_FREE(r);
cannam@95 431 THREAD_OFF; /* prevent debugging mode from failing under threads */
cannam@95 432 }
cannam@95 433
cannam@95 434 void X(threads_cleanup)(void)
cannam@95 435 {
cannam@95 436 kill_workforce();
cannam@95 437 os_mutex_destroy(&queue_lock);
cannam@95 438 os_sem_destroy(&termination_semaphore);
cannam@95 439 }