annotate win32-mingw/include/kj/mutex.h @ 81:7029a4916348

Merge build update
author Chris Cannam
date Thu, 31 Oct 2019 13:36:58 +0000
parents eccd51b72864
children
rev   line source
Chris@64 1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
Chris@64 2 // Licensed under the MIT License:
Chris@64 3 //
Chris@64 4 // Permission is hereby granted, free of charge, to any person obtaining a copy
Chris@64 5 // of this software and associated documentation files (the "Software"), to deal
Chris@64 6 // in the Software without restriction, including without limitation the rights
Chris@64 7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
Chris@64 8 // copies of the Software, and to permit persons to whom the Software is
Chris@64 9 // furnished to do so, subject to the following conditions:
Chris@64 10 //
Chris@64 11 // The above copyright notice and this permission notice shall be included in
Chris@64 12 // all copies or substantial portions of the Software.
Chris@64 13 //
Chris@64 14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
Chris@64 15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
Chris@64 16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
Chris@64 17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
Chris@64 18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
Chris@64 19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
Chris@64 20 // THE SOFTWARE.
Chris@64 21
Chris@64 22 #ifndef KJ_MUTEX_H_
Chris@64 23 #define KJ_MUTEX_H_
Chris@64 24
Chris@64 25 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
Chris@64 26 #pragma GCC system_header
Chris@64 27 #endif
Chris@64 28
Chris@64 29 #include "memory.h"
Chris@64 30 #include <inttypes.h>
Chris@64 31
Chris@64 32 #if __linux__ && !defined(KJ_USE_FUTEX)
Chris@64 33 #define KJ_USE_FUTEX 1
Chris@64 34 #endif
Chris@64 35
Chris@64 36 #if !KJ_USE_FUTEX && !_WIN32
Chris@64 37 // On Linux we use futex. On other platforms we wrap pthreads.
Chris@64 38 // TODO(someday): Write efficient low-level locking primitives for other platforms.
Chris@64 39 #include <pthread.h>
Chris@64 40 #endif
Chris@64 41
Chris@64 42 namespace kj {
Chris@64 43
Chris@64 44 // =======================================================================================
Chris@64 45 // Private details -- public interfaces follow below.
Chris@64 46
Chris@64 47 namespace _ { // private
Chris@64 48
Chris@64 49 class Mutex {
Chris@64 50 // Internal implementation details. See `MutexGuarded<T>`.
Chris@64 51
Chris@64 52 public:
Chris@64 53 Mutex();
Chris@64 54 ~Mutex();
Chris@64 55 KJ_DISALLOW_COPY(Mutex);
Chris@64 56
Chris@64 57 enum Exclusivity {
Chris@64 58 EXCLUSIVE,
Chris@64 59 SHARED
Chris@64 60 };
Chris@64 61
Chris@64 62 void lock(Exclusivity exclusivity);
Chris@64 63 void unlock(Exclusivity exclusivity);
Chris@64 64
Chris@64 65 void assertLockedByCaller(Exclusivity exclusivity);
Chris@64 66 // In debug mode, assert that the mutex is locked by the calling thread, or if that is
Chris@64 67 // non-trivial, assert that the mutex is locked (which should be good enough to catch problems
Chris@64 68 // in unit tests). In non-debug builds, do nothing.
Chris@64 69
Chris@64 70 private:
Chris@64 71 #if KJ_USE_FUTEX
Chris@64 72 uint futex;
Chris@64 73 // bit 31 (msb) = set if exclusive lock held
Chris@64 74 // bit 30 (msb) = set if threads are waiting for exclusive lock
Chris@64 75 // bits 0-29 = count of readers; If an exclusive lock is held, this is the count of threads
Chris@64 76 // waiting for a read lock, otherwise it is the count of threads that currently hold a read
Chris@64 77 // lock.
Chris@64 78
Chris@64 79 static constexpr uint EXCLUSIVE_HELD = 1u << 31;
Chris@64 80 static constexpr uint EXCLUSIVE_REQUESTED = 1u << 30;
Chris@64 81 static constexpr uint SHARED_COUNT_MASK = EXCLUSIVE_REQUESTED - 1;
Chris@64 82
Chris@64 83 #elif _WIN32
Chris@64 84 uintptr_t srwLock; // Actually an SRWLOCK, but don't want to #include <windows.h> in header.
Chris@64 85
Chris@64 86 #else
Chris@64 87 mutable pthread_rwlock_t mutex;
Chris@64 88 #endif
Chris@64 89 };
Chris@64 90
Chris@64 91 class Once {
Chris@64 92 // Internal implementation details. See `Lazy<T>`.
Chris@64 93
Chris@64 94 public:
Chris@64 95 #if KJ_USE_FUTEX
Chris@64 96 inline Once(bool startInitialized = false)
Chris@64 97 : futex(startInitialized ? INITIALIZED : UNINITIALIZED) {}
Chris@64 98 #else
Chris@64 99 Once(bool startInitialized = false);
Chris@64 100 ~Once();
Chris@64 101 #endif
Chris@64 102 KJ_DISALLOW_COPY(Once);
Chris@64 103
Chris@64 104 class Initializer {
Chris@64 105 public:
Chris@64 106 virtual void run() = 0;
Chris@64 107 };
Chris@64 108
Chris@64 109 void runOnce(Initializer& init);
Chris@64 110
Chris@64 111 #if _WIN32 // TODO(perf): Can we make this inline on win32 somehow?
Chris@64 112 bool isInitialized() noexcept;
Chris@64 113
Chris@64 114 #else
Chris@64 115 inline bool isInitialized() noexcept {
Chris@64 116 // Fast path check to see if runOnce() would simply return immediately.
Chris@64 117 #if KJ_USE_FUTEX
Chris@64 118 return __atomic_load_n(&futex, __ATOMIC_ACQUIRE) == INITIALIZED;
Chris@64 119 #else
Chris@64 120 return __atomic_load_n(&state, __ATOMIC_ACQUIRE) == INITIALIZED;
Chris@64 121 #endif
Chris@64 122 }
Chris@64 123 #endif
Chris@64 124
Chris@64 125 void reset();
Chris@64 126 // Returns the state from initialized to uninitialized. It is an error to call this when
Chris@64 127 // not already initialized, or when runOnce() or isInitialized() might be called concurrently in
Chris@64 128 // another thread.
Chris@64 129
Chris@64 130 private:
Chris@64 131 #if KJ_USE_FUTEX
Chris@64 132 uint futex;
Chris@64 133
Chris@64 134 enum State {
Chris@64 135 UNINITIALIZED,
Chris@64 136 INITIALIZING,
Chris@64 137 INITIALIZING_WITH_WAITERS,
Chris@64 138 INITIALIZED
Chris@64 139 };
Chris@64 140
Chris@64 141 #elif _WIN32
Chris@64 142 uintptr_t initOnce; // Actually an INIT_ONCE, but don't want to #include <windows.h> in header.
Chris@64 143
Chris@64 144 #else
Chris@64 145 enum State {
Chris@64 146 UNINITIALIZED,
Chris@64 147 INITIALIZED
Chris@64 148 };
Chris@64 149 State state;
Chris@64 150 pthread_mutex_t mutex;
Chris@64 151 #endif
Chris@64 152 };
Chris@64 153
Chris@64 154 } // namespace _ (private)
Chris@64 155
Chris@64 156 // =======================================================================================
Chris@64 157 // Public interface
Chris@64 158
Chris@64 159 template <typename T>
Chris@64 160 class Locked {
Chris@64 161 // Return type for `MutexGuarded<T>::lock()`. `Locked<T>` provides access to the bounded object
Chris@64 162 // and unlocks the mutex when it goes out of scope.
Chris@64 163
Chris@64 164 public:
Chris@64 165 KJ_DISALLOW_COPY(Locked);
Chris@64 166 inline Locked(): mutex(nullptr), ptr(nullptr) {}
Chris@64 167 inline Locked(Locked&& other): mutex(other.mutex), ptr(other.ptr) {
Chris@64 168 other.mutex = nullptr;
Chris@64 169 other.ptr = nullptr;
Chris@64 170 }
Chris@64 171 inline ~Locked() {
Chris@64 172 if (mutex != nullptr) mutex->unlock(isConst<T>() ? _::Mutex::SHARED : _::Mutex::EXCLUSIVE);
Chris@64 173 }
Chris@64 174
Chris@64 175 inline Locked& operator=(Locked&& other) {
Chris@64 176 if (mutex != nullptr) mutex->unlock(isConst<T>() ? _::Mutex::SHARED : _::Mutex::EXCLUSIVE);
Chris@64 177 mutex = other.mutex;
Chris@64 178 ptr = other.ptr;
Chris@64 179 other.mutex = nullptr;
Chris@64 180 other.ptr = nullptr;
Chris@64 181 return *this;
Chris@64 182 }
Chris@64 183
Chris@64 184 inline void release() {
Chris@64 185 if (mutex != nullptr) mutex->unlock(isConst<T>() ? _::Mutex::SHARED : _::Mutex::EXCLUSIVE);
Chris@64 186 mutex = nullptr;
Chris@64 187 ptr = nullptr;
Chris@64 188 }
Chris@64 189
Chris@64 190 inline T* operator->() { return ptr; }
Chris@64 191 inline const T* operator->() const { return ptr; }
Chris@64 192 inline T& operator*() { return *ptr; }
Chris@64 193 inline const T& operator*() const { return *ptr; }
Chris@64 194 inline T* get() { return ptr; }
Chris@64 195 inline const T* get() const { return ptr; }
Chris@64 196 inline operator T*() { return ptr; }
Chris@64 197 inline operator const T*() const { return ptr; }
Chris@64 198
Chris@64 199 private:
Chris@64 200 _::Mutex* mutex;
Chris@64 201 T* ptr;
Chris@64 202
Chris@64 203 inline Locked(_::Mutex& mutex, T& value): mutex(&mutex), ptr(&value) {}
Chris@64 204
Chris@64 205 template <typename U>
Chris@64 206 friend class MutexGuarded;
Chris@64 207 };
Chris@64 208
Chris@64 209 template <typename T>
Chris@64 210 class MutexGuarded {
Chris@64 211 // An object of type T, bounded by a mutex. In order to access the object, you must lock it.
Chris@64 212 //
Chris@64 213 // Write locks are not "recursive" -- trying to lock again in a thread that already holds a lock
Chris@64 214 // will deadlock. Recursive write locks are usually a sign of bad design.
Chris@64 215 //
Chris@64 216 // Unfortunately, **READ LOCKS ARE NOT RECURSIVE** either. Common sense says they should be.
Chris@64 217 // But on many operating systems (BSD, OSX), recursively read-locking a pthread_rwlock is
Chris@64 218 // actually unsafe. The problem is that writers are "prioritized" over readers, so a read lock
Chris@64 219 // request will block if any write lock requests are outstanding. So, if thread A takes a read
Chris@64 220 // lock, thread B requests a write lock (and starts waiting), and then thread A tries to take
Chris@64 221 // another read lock recursively, the result is deadlock.
Chris@64 222
Chris@64 223 public:
Chris@64 224 template <typename... Params>
Chris@64 225 explicit MutexGuarded(Params&&... params);
Chris@64 226 // Initialize the mutex-bounded object by passing the given parameters to its constructor.
Chris@64 227
Chris@64 228 Locked<T> lockExclusive() const;
Chris@64 229 // Exclusively locks the object and returns it. The returned `Locked<T>` can be passed by
Chris@64 230 // move, similar to `Own<T>`.
Chris@64 231 //
Chris@64 232 // This method is declared `const` in accordance with KJ style rules which say that constness
Chris@64 233 // should be used to indicate thread-safety. It is safe to share a const pointer between threads,
Chris@64 234 // but it is not safe to share a mutable pointer. Since the whole point of MutexGuarded is to
Chris@64 235 // be shared between threads, its methods should be const, even though locking it produces a
Chris@64 236 // non-const pointer to the contained object.
Chris@64 237
Chris@64 238 Locked<const T> lockShared() const;
Chris@64 239 // Lock the value for shared access. Multiple shared locks can be taken concurrently, but cannot
Chris@64 240 // be held at the same time as a non-shared lock.
Chris@64 241
Chris@64 242 inline const T& getWithoutLock() const { return value; }
Chris@64 243 inline T& getWithoutLock() { return value; }
Chris@64 244 // Escape hatch for cases where some external factor guarantees that it's safe to get the
Chris@64 245 // value. You should treat these like const_cast -- be highly suspicious of any use.
Chris@64 246
Chris@64 247 inline const T& getAlreadyLockedShared() const;
Chris@64 248 inline T& getAlreadyLockedShared();
Chris@64 249 inline T& getAlreadyLockedExclusive() const;
Chris@64 250 // Like `getWithoutLock()`, but asserts that the lock is already held by the calling thread.
Chris@64 251
Chris@64 252 private:
Chris@64 253 mutable _::Mutex mutex;
Chris@64 254 mutable T value;
Chris@64 255 };
Chris@64 256
Chris@64 257 template <typename T>
Chris@64 258 class MutexGuarded<const T> {
Chris@64 259 // MutexGuarded cannot guard a const type. This would be pointless anyway, and would complicate
Chris@64 260 // the implementation of Locked<T>, which uses constness to decide what kind of lock it holds.
Chris@64 261 static_assert(sizeof(T) < 0, "MutexGuarded's type cannot be const.");
Chris@64 262 };
Chris@64 263
Chris@64 264 template <typename T>
Chris@64 265 class Lazy {
Chris@64 266 // A lazily-initialized value.
Chris@64 267
Chris@64 268 public:
Chris@64 269 template <typename Func>
Chris@64 270 T& get(Func&& init);
Chris@64 271 template <typename Func>
Chris@64 272 const T& get(Func&& init) const;
Chris@64 273 // The first thread to call get() will invoke the given init function to construct the value.
Chris@64 274 // Other threads will block until construction completes, then return the same value.
Chris@64 275 //
Chris@64 276 // `init` is a functor(typically a lambda) which takes `SpaceFor<T>&` as its parameter and returns
Chris@64 277 // `Own<T>`. If `init` throws an exception, the exception is propagated out of that thread's
Chris@64 278 // call to `get()`, and subsequent calls behave as if `get()` hadn't been called at all yet --
Chris@64 279 // in other words, subsequent calls retry initialization until it succeeds.
Chris@64 280
Chris@64 281 private:
Chris@64 282 mutable _::Once once;
Chris@64 283 mutable SpaceFor<T> space;
Chris@64 284 mutable Own<T> value;
Chris@64 285
Chris@64 286 template <typename Func>
Chris@64 287 class InitImpl;
Chris@64 288 };
Chris@64 289
Chris@64 290 // =======================================================================================
Chris@64 291 // Inline implementation details
Chris@64 292
Chris@64 293 template <typename T>
Chris@64 294 template <typename... Params>
Chris@64 295 inline MutexGuarded<T>::MutexGuarded(Params&&... params)
Chris@64 296 : value(kj::fwd<Params>(params)...) {}
Chris@64 297
Chris@64 298 template <typename T>
Chris@64 299 inline Locked<T> MutexGuarded<T>::lockExclusive() const {
Chris@64 300 mutex.lock(_::Mutex::EXCLUSIVE);
Chris@64 301 return Locked<T>(mutex, value);
Chris@64 302 }
Chris@64 303
Chris@64 304 template <typename T>
Chris@64 305 inline Locked<const T> MutexGuarded<T>::lockShared() const {
Chris@64 306 mutex.lock(_::Mutex::SHARED);
Chris@64 307 return Locked<const T>(mutex, value);
Chris@64 308 }
Chris@64 309
Chris@64 310 template <typename T>
Chris@64 311 inline const T& MutexGuarded<T>::getAlreadyLockedShared() const {
Chris@64 312 #ifdef KJ_DEBUG
Chris@64 313 mutex.assertLockedByCaller(_::Mutex::SHARED);
Chris@64 314 #endif
Chris@64 315 return value;
Chris@64 316 }
Chris@64 317 template <typename T>
Chris@64 318 inline T& MutexGuarded<T>::getAlreadyLockedShared() {
Chris@64 319 #ifdef KJ_DEBUG
Chris@64 320 mutex.assertLockedByCaller(_::Mutex::SHARED);
Chris@64 321 #endif
Chris@64 322 return value;
Chris@64 323 }
Chris@64 324 template <typename T>
Chris@64 325 inline T& MutexGuarded<T>::getAlreadyLockedExclusive() const {
Chris@64 326 #ifdef KJ_DEBUG
Chris@64 327 mutex.assertLockedByCaller(_::Mutex::EXCLUSIVE);
Chris@64 328 #endif
Chris@64 329 return const_cast<T&>(value);
Chris@64 330 }
Chris@64 331
Chris@64 332 template <typename T>
Chris@64 333 template <typename Func>
Chris@64 334 class Lazy<T>::InitImpl: public _::Once::Initializer {
Chris@64 335 public:
Chris@64 336 inline InitImpl(const Lazy<T>& lazy, Func&& func): lazy(lazy), func(kj::fwd<Func>(func)) {}
Chris@64 337
Chris@64 338 void run() override {
Chris@64 339 lazy.value = func(lazy.space);
Chris@64 340 }
Chris@64 341
Chris@64 342 private:
Chris@64 343 const Lazy<T>& lazy;
Chris@64 344 Func func;
Chris@64 345 };
Chris@64 346
Chris@64 347 template <typename T>
Chris@64 348 template <typename Func>
Chris@64 349 inline T& Lazy<T>::get(Func&& init) {
Chris@64 350 if (!once.isInitialized()) {
Chris@64 351 InitImpl<Func> initImpl(*this, kj::fwd<Func>(init));
Chris@64 352 once.runOnce(initImpl);
Chris@64 353 }
Chris@64 354 return *value;
Chris@64 355 }
Chris@64 356
Chris@64 357 template <typename T>
Chris@64 358 template <typename Func>
Chris@64 359 inline const T& Lazy<T>::get(Func&& init) const {
Chris@64 360 if (!once.isInitialized()) {
Chris@64 361 InitImpl<Func> initImpl(*this, kj::fwd<Func>(init));
Chris@64 362 once.runOnce(initImpl);
Chris@64 363 }
Chris@64 364 return *value;
Chris@64 365 }
Chris@64 366
Chris@64 367 } // namespace kj
Chris@64 368
Chris@64 369 #endif // KJ_MUTEX_H_