annotate src/fftw-3.3.5/reodft/rodft00e-r2hc.c @ 81:7029a4916348

Merge build update
author Chris Cannam
date Thu, 31 Oct 2019 13:36:58 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21
Chris@42 22 /* Do a RODFT00 problem via an R2HC problem, with some pre/post-processing.
Chris@42 23
Chris@42 24 This code uses the trick from FFTPACK, also documented in a similar
Chris@42 25 form by Numerical Recipes. Unfortunately, this algorithm seems to
Chris@42 26 have intrinsic numerical problems (similar to those in
Chris@42 27 reodft11e-r2hc.c), possibly due to the fact that it multiplies its
Chris@42 28 input by a sine, causing a loss of precision near the zero. For
Chris@42 29 transforms of 16k points, it has already lost three or four decimal
Chris@42 30 places of accuracy, which we deem unacceptable.
Chris@42 31
Chris@42 32 So, we have abandoned this algorithm in favor of the one in
Chris@42 33 rodft00-r2hc-pad.c, which unfortunately sacrifices 30-50% in speed.
Chris@42 34 The only other alternative in the literature that does not have
Chris@42 35 similar numerical difficulties seems to be the direct adaptation of
Chris@42 36 the Cooley-Tukey decomposition for antisymmetric data, but this
Chris@42 37 would require a whole new set of codelets and it's not clear that
Chris@42 38 it's worth it at this point. However, we did implement the latter
Chris@42 39 algorithm for the specific case of odd n (logically adapting the
Chris@42 40 split-radix algorithm); see reodft00e-splitradix.c. */
Chris@42 41
Chris@42 42 #include "reodft.h"
Chris@42 43
Chris@42 44 typedef struct {
Chris@42 45 solver super;
Chris@42 46 } S;
Chris@42 47
Chris@42 48 typedef struct {
Chris@42 49 plan_rdft super;
Chris@42 50 plan *cld;
Chris@42 51 twid *td;
Chris@42 52 INT is, os;
Chris@42 53 INT n;
Chris@42 54 INT vl;
Chris@42 55 INT ivs, ovs;
Chris@42 56 } P;
Chris@42 57
Chris@42 58 static void apply(const plan *ego_, R *I, R *O)
Chris@42 59 {
Chris@42 60 const P *ego = (const P *) ego_;
Chris@42 61 INT is = ego->is, os = ego->os;
Chris@42 62 INT i, n = ego->n;
Chris@42 63 INT iv, vl = ego->vl;
Chris@42 64 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@42 65 R *W = ego->td->W;
Chris@42 66 R *buf;
Chris@42 67
Chris@42 68 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@42 69
Chris@42 70 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@42 71 buf[0] = 0;
Chris@42 72 for (i = 1; i < n - i; ++i) {
Chris@42 73 E a, b, apb, amb;
Chris@42 74 a = I[is * (i - 1)];
Chris@42 75 b = I[is * ((n - i) - 1)];
Chris@42 76 apb = K(2.0) * W[i] * (a + b);
Chris@42 77 amb = (a - b);
Chris@42 78 buf[i] = apb + amb;
Chris@42 79 buf[n - i] = apb - amb;
Chris@42 80 }
Chris@42 81 if (i == n - i) {
Chris@42 82 buf[i] = K(4.0) * I[is * (i - 1)];
Chris@42 83 }
Chris@42 84
Chris@42 85 {
Chris@42 86 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@42 87 cld->apply((plan *) cld, buf, buf);
Chris@42 88 }
Chris@42 89
Chris@42 90 /* FIXME: use recursive/cascade summation for better stability? */
Chris@42 91 O[0] = buf[0] * 0.5;
Chris@42 92 for (i = 1; i + i < n - 1; ++i) {
Chris@42 93 INT k = i + i;
Chris@42 94 O[os * (k - 1)] = -buf[n - i];
Chris@42 95 O[os * k] = O[os * (k - 2)] + buf[i];
Chris@42 96 }
Chris@42 97 if (i + i == n - 1) {
Chris@42 98 O[os * (n - 2)] = -buf[n - i];
Chris@42 99 }
Chris@42 100 }
Chris@42 101
Chris@42 102 X(ifree)(buf);
Chris@42 103 }
Chris@42 104
Chris@42 105 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@42 106 {
Chris@42 107 P *ego = (P *) ego_;
Chris@42 108 static const tw_instr rodft00e_tw[] = {
Chris@42 109 { TW_SIN, 0, 1 },
Chris@42 110 { TW_NEXT, 1, 0 }
Chris@42 111 };
Chris@42 112
Chris@42 113 X(plan_awake)(ego->cld, wakefulness);
Chris@42 114
Chris@42 115 X(twiddle_awake)(wakefulness,
Chris@42 116 &ego->td, rodft00e_tw, 2*ego->n, 1, (ego->n+1)/2);
Chris@42 117 }
Chris@42 118
Chris@42 119 static void destroy(plan *ego_)
Chris@42 120 {
Chris@42 121 P *ego = (P *) ego_;
Chris@42 122 X(plan_destroy_internal)(ego->cld);
Chris@42 123 }
Chris@42 124
Chris@42 125 static void print(const plan *ego_, printer *p)
Chris@42 126 {
Chris@42 127 const P *ego = (const P *) ego_;
Chris@42 128 p->print(p, "(rodft00e-r2hc-%D%v%(%p%))", ego->n - 1, ego->vl, ego->cld);
Chris@42 129 }
Chris@42 130
Chris@42 131 static int applicable0(const solver *ego_, const problem *p_)
Chris@42 132 {
Chris@42 133 const problem_rdft *p = (const problem_rdft *) p_;
Chris@42 134 UNUSED(ego_);
Chris@42 135
Chris@42 136 return (1
Chris@42 137 && p->sz->rnk == 1
Chris@42 138 && p->vecsz->rnk <= 1
Chris@42 139 && p->kind[0] == RODFT00
Chris@42 140 );
Chris@42 141 }
Chris@42 142
Chris@42 143 static int applicable(const solver *ego, const problem *p, const planner *plnr)
Chris@42 144 {
Chris@42 145 return (!NO_SLOWP(plnr) && applicable0(ego, p));
Chris@42 146 }
Chris@42 147
Chris@42 148 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@42 149 {
Chris@42 150 P *pln;
Chris@42 151 const problem_rdft *p;
Chris@42 152 plan *cld;
Chris@42 153 R *buf;
Chris@42 154 INT n;
Chris@42 155 opcnt ops;
Chris@42 156
Chris@42 157 static const plan_adt padt = {
Chris@42 158 X(rdft_solve), awake, print, destroy
Chris@42 159 };
Chris@42 160
Chris@42 161 if (!applicable(ego_, p_, plnr))
Chris@42 162 return (plan *)0;
Chris@42 163
Chris@42 164 p = (const problem_rdft *) p_;
Chris@42 165
Chris@42 166 n = p->sz->dims[0].n + 1;
Chris@42 167 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@42 168
Chris@42 169 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
Chris@42 170 X(mktensor_0d)(),
Chris@42 171 buf, buf, R2HC));
Chris@42 172 X(ifree)(buf);
Chris@42 173 if (!cld)
Chris@42 174 return (plan *)0;
Chris@42 175
Chris@42 176 pln = MKPLAN_RDFT(P, &padt, apply);
Chris@42 177
Chris@42 178 pln->n = n;
Chris@42 179 pln->is = p->sz->dims[0].is;
Chris@42 180 pln->os = p->sz->dims[0].os;
Chris@42 181 pln->cld = cld;
Chris@42 182 pln->td = 0;
Chris@42 183
Chris@42 184 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
Chris@42 185
Chris@42 186 X(ops_zero)(&ops);
Chris@42 187 ops.other = 4 + (n-1)/2 * 5 + (n-2)/2 * 5;
Chris@42 188 ops.add = (n-1)/2 * 4 + (n-2)/2 * 1;
Chris@42 189 ops.mul = 1 + (n-1)/2 * 2;
Chris@42 190 if (n % 2 == 0)
Chris@42 191 ops.mul += 1;
Chris@42 192
Chris@42 193 X(ops_zero)(&pln->super.super.ops);
Chris@42 194 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
Chris@42 195 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
Chris@42 196
Chris@42 197 return &(pln->super.super);
Chris@42 198 }
Chris@42 199
Chris@42 200 /* constructor */
Chris@42 201 static solver *mksolver(void)
Chris@42 202 {
Chris@42 203 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@42 204 S *slv = MKSOLVER(S, &sadt);
Chris@42 205 return &(slv->super);
Chris@42 206 }
Chris@42 207
Chris@42 208 void X(rodft00e_r2hc_register)(planner *p)
Chris@42 209 {
Chris@42 210 REGISTER_SOLVER(p, mksolver());
Chris@42 211 }