annotate src/fftw-3.3.5/dft/generic.c @ 54:5f67a29f0fc7

Rebuild MAD with 64-bit FPM
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 30 Nov 2016 20:59:17 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 #include "dft.h"
Chris@42 22
Chris@42 23 typedef struct {
Chris@42 24 solver super;
Chris@42 25 } S;
Chris@42 26
Chris@42 27 typedef struct {
Chris@42 28 plan_dft super;
Chris@42 29 twid *td;
Chris@42 30 INT n, is, os;
Chris@42 31 } P;
Chris@42 32
Chris@42 33
Chris@42 34 static void cdot(INT n, const E *x, const R *w,
Chris@42 35 R *or0, R *oi0, R *or1, R *oi1)
Chris@42 36 {
Chris@42 37 INT i;
Chris@42 38
Chris@42 39 E rr = x[0], ri = 0, ir = x[1], ii = 0;
Chris@42 40 x += 2;
Chris@42 41 for (i = 1; i + i < n; ++i) {
Chris@42 42 rr += x[0] * w[0];
Chris@42 43 ir += x[1] * w[0];
Chris@42 44 ri += x[2] * w[1];
Chris@42 45 ii += x[3] * w[1];
Chris@42 46 x += 4; w += 2;
Chris@42 47 }
Chris@42 48 *or0 = rr + ii;
Chris@42 49 *oi0 = ir - ri;
Chris@42 50 *or1 = rr - ii;
Chris@42 51 *oi1 = ir + ri;
Chris@42 52 }
Chris@42 53
Chris@42 54 static void hartley(INT n, const R *xr, const R *xi, INT xs, E *o,
Chris@42 55 R *pr, R *pi)
Chris@42 56 {
Chris@42 57 INT i;
Chris@42 58 E sr, si;
Chris@42 59 o[0] = sr = xr[0]; o[1] = si = xi[0]; o += 2;
Chris@42 60 for (i = 1; i + i < n; ++i) {
Chris@42 61 sr += (o[0] = xr[i * xs] + xr[(n - i) * xs]);
Chris@42 62 si += (o[1] = xi[i * xs] + xi[(n - i) * xs]);
Chris@42 63 o[2] = xr[i * xs] - xr[(n - i) * xs];
Chris@42 64 o[3] = xi[i * xs] - xi[(n - i) * xs];
Chris@42 65 o += 4;
Chris@42 66 }
Chris@42 67 *pr = sr;
Chris@42 68 *pi = si;
Chris@42 69 }
Chris@42 70
Chris@42 71 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
Chris@42 72 {
Chris@42 73 const P *ego = (const P *) ego_;
Chris@42 74 INT i;
Chris@42 75 INT n = ego->n, is = ego->is, os = ego->os;
Chris@42 76 const R *W = ego->td->W;
Chris@42 77 E *buf;
Chris@42 78 size_t bufsz = n * 2 * sizeof(E);
Chris@42 79
Chris@42 80 BUF_ALLOC(E *, buf, bufsz);
Chris@42 81 hartley(n, ri, ii, is, buf, ro, io);
Chris@42 82
Chris@42 83 for (i = 1; i + i < n; ++i) {
Chris@42 84 cdot(n, buf, W,
Chris@42 85 ro + i * os, io + i * os,
Chris@42 86 ro + (n - i) * os, io + (n - i) * os);
Chris@42 87 W += n - 1;
Chris@42 88 }
Chris@42 89
Chris@42 90 BUF_FREE(buf, bufsz);
Chris@42 91 }
Chris@42 92
Chris@42 93 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@42 94 {
Chris@42 95 P *ego = (P *) ego_;
Chris@42 96 static const tw_instr half_tw[] = {
Chris@42 97 { TW_HALF, 1, 0 },
Chris@42 98 { TW_NEXT, 1, 0 }
Chris@42 99 };
Chris@42 100
Chris@42 101 X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
Chris@42 102 (ego->n - 1) / 2);
Chris@42 103 }
Chris@42 104
Chris@42 105 static void print(const plan *ego_, printer *p)
Chris@42 106 {
Chris@42 107 const P *ego = (const P *) ego_;
Chris@42 108
Chris@42 109 p->print(p, "(dft-generic-%D)", ego->n);
Chris@42 110 }
Chris@42 111
Chris@42 112 static int applicable(const solver *ego, const problem *p_,
Chris@42 113 const planner *plnr)
Chris@42 114 {
Chris@42 115 const problem_dft *p = (const problem_dft *) p_;
Chris@42 116 UNUSED(ego);
Chris@42 117
Chris@42 118 return (1
Chris@42 119 && p->sz->rnk == 1
Chris@42 120 && p->vecsz->rnk == 0
Chris@42 121 && (p->sz->dims[0].n % 2) == 1
Chris@42 122 && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD)
Chris@42 123 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW)
Chris@42 124 && X(is_prime)(p->sz->dims[0].n)
Chris@42 125 );
Chris@42 126 }
Chris@42 127
Chris@42 128 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
Chris@42 129 {
Chris@42 130 const problem_dft *p;
Chris@42 131 P *pln;
Chris@42 132 INT n;
Chris@42 133
Chris@42 134 static const plan_adt padt = {
Chris@42 135 X(dft_solve), awake, print, X(plan_null_destroy)
Chris@42 136 };
Chris@42 137
Chris@42 138 if (!applicable(ego, p_, plnr))
Chris@42 139 return (plan *)0;
Chris@42 140
Chris@42 141 pln = MKPLAN_DFT(P, &padt, apply);
Chris@42 142
Chris@42 143 p = (const problem_dft *) p_;
Chris@42 144 pln->n = n = p->sz->dims[0].n;
Chris@42 145 pln->is = p->sz->dims[0].is;
Chris@42 146 pln->os = p->sz->dims[0].os;
Chris@42 147 pln->td = 0;
Chris@42 148
Chris@42 149 pln->super.super.ops.add = (n-1) * 5;
Chris@42 150 pln->super.super.ops.mul = 0;
Chris@42 151 pln->super.super.ops.fma = (n-1) * (n-1) ;
Chris@42 152 #if 0 /* these are nice pipelined sequential loads and should cost nothing */
Chris@42 153 pln->super.super.ops.other = (n-1)*(4 + 1 + 2 * (n-1)); /* approximate */
Chris@42 154 #endif
Chris@42 155
Chris@42 156 return &(pln->super.super);
Chris@42 157 }
Chris@42 158
Chris@42 159 static solver *mksolver(void)
Chris@42 160 {
Chris@42 161 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
Chris@42 162 S *slv = MKSOLVER(S, &sadt);
Chris@42 163 return &(slv->super);
Chris@42 164 }
Chris@42 165
Chris@42 166 void X(dft_generic_register)(planner *p)
Chris@42 167 {
Chris@42 168 REGISTER_SOLVER(p, mksolver());
Chris@42 169 }